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APPENDIX A
LEARNING OBJECTIVE

In this section, we provide a detailed derivation of the
objective function presented in Section 4.2 of the paper.

Given the loss function ∆ (equation (7) of the main paper),
which is tuned for the task of object detection, we compute the
diversity terms as given in equation (9) of the main paper. Re-
call that the diversity for any two distributions is the expected
loss of the samples drawn from the two distributions. For
the prediction distribution Prp and the conditional distribution
Prc, we derive the diversity between them and their self
diversities as follows.

Diversity between prediction net and conditional net:
Following equation (9) of the main paper, the diversity be-
tween prediction and conditional distribution can be written
as,

(1)
DIV∆(Prp,Prc)

= Eyp∼Prp(y|x;θp)[Eyc∼Prc(y|x,h;θc)[∆(yp,yc)]].

The task specific loss function is decomposed over the bound-
ing boxes as given in equation (7) of the main paper. We
then write the expectation with respect to the conditional
distribution (the inner distribution) as expectation over the
random variables z with distribution Pr(z) using the Law of
the Unconscious Statistician (LOTUS).

(2)

DIV∆(Prp,Prc)

= Eyp∼Prp(y|x;θp)[Ez∼Pr(z)[
1

B

B∑
i=1

∆(y(i)
p , ŷk,(i)c )]].

The expectation over the random variable z with distribution
Pr(z) is approximated by taking K samples from Pr(z),

(3)

DIV∆(Prp,Prc)

= Eyp∼Prp(y|x;θp)[
1

K

K∑
k=1

1

B

B∑
i=1

∆(y(i)
p , ŷk,(i)c )].

We finally compute the expectation with respect to the predic-
tion distribution as,

(4)

DIV∆(Prp,Prc)

=
1

BK

B∑
i=1

K∑
k=1

∑
y
(i)
p

Prp(y
(i)
p ;θp)∆(y(i)

p , ŷk,(i)c ).
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Self diversity for conditional net: As above, using equation
(9) of the main paper, we write the self diversity coefficient
of the conditional distribution as

(5)
DIV∆(Prc,Prc)

= Eyc∼Prc(y|x,h;θc)[Ey′
c∼Prc(y|x,h;θc)[∆(yc,y

′
c)]].

We now write the two expectations with respect to the
conditional distribution as the expectation over the random
variables z and z′ respectively. The task specific loss function
is decomposed over the bounding box as shown in equation (7)
of the main paper. Therefore, we re-write the above equation
as

(6)

DIV∆(Prc,Prc)

= Ez∼Pr(z)[Ez′∼Pr(z)[
1

B

B∑
i=1

∆(ŷk,(i)c , ŷ′
k,(i)

c )]].

In order to approximate the expectation over the random
variables z and z′, we use K samples from the distribution
Pr(z) as

(7)

DIV∆(Prc,Prc)

=
1

K

K∑
k=1

1

K − 1

K∑
k′=1,
k′ 6=k

1

B

B∑
i=1

∆(ŷk,(i)c , ŷ′
k′,(i)

c ).

On re-arranging the above equation, we get

DIV∆(Prc,Prc) =
1

K(K − 1)B

K∑
k,k′=1
k′ 6=k

B∑
i=1

∆(ŷk,(i)c , ŷ′
k′,(i)

c ).

(8)

Self diversity for prediction net: Similar to the above two
cases, using equation (9) of the main paper, we can write the
self diversity of the prediction net as

(9)
DIV∆(Prp,Prp)

= Eyp∼Prp(y|x;θp)[Ey′
p∼Prp(y|x;θp)[∆(yp,y

′
p)]].

We then decompose the task specific loss function over the
bounding boxes as described in equation (7) of the main paper,

DIV∆(Prp,Prp)

= Eyp∼Prp(y|x;θp)[Ey′
1∼Prp(y|x;θp)[

1

B

B∑
i=1

∆(y(i)
p ,y′

(i)
p )]]
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Note that the prediction distribution is a fully factorized dis-
tribution, and we can compute its exact expectation. Therefore,
we compute the two expectations with respect to the prediction
distribution as,

Eyp∼Prp(y′|x;θp)[
1

B

B∑
i=1

∑
y′(i)

p

Prp(y
′(i)
p ;θp)∆(y(i)

p ,y′
(i)
p )]

=
1

B

B∑
i=1

∑
y
(i)
p

∑
y′(i)

p

Prp(y
(i)
p ;θ1) Prp(y

′(i)
p ;θp)∆(y(i)

p ,y′
(i)
p )

(11)

APPENDIX B
OPTIMIZATION

A. Optimization over Prediction Distribution

As parameters θc of the conditional distribution are con-
stant, the learning objective of the prediction distribution
(equation (15) of the main paper) results in a fully supervised
training of the Fast-RCNN network [1]. Note that the only
difference between the training of a standard Fast-RCNN ar-
chitecture and our prediction net is the use of the dissimilarity
objective function (equation (15) of the main paper) instead
of minimizing the multi-task loss of the Fast-RCNN.

The prediction net takes as the input an image and the K
predictions sampled from the conditional net. Treating these
predictions of the conditional net as the pseudo ground truth
label, we compute the gradient of our dissimilarity coefficient
based loss function. As the objective given in equation (15)
of the main paper is differentiable with respect to parameters
θp, we update the network by employing stochastic gradient
descent.

B. Optimization over Conditional Distribution

A non-differentiable training procedure: The conditional
net is modeled using a Discrete DISCO Net which employs
a sampling step from the scoring function Sk(yc). This sam-
pling step makes the objective function non-differentiable with
respect to the parameters θc, even though the scoring function
Sk(yc) itself is differentiable. However, as the prediction
network is fixed, the above objective function reduces to the
one used in Bouchacourt et al. [2] for fully supervised training.
Therefore, similar to Bouchacourt et al. [2], we solve this
problem by estimating the gradients of our objective function
with the help of temperature parameter ε as,

(12)
∇θc

DISCε∆(Prp(θp),Prc(θc))

= ± lim
ε→0

1

ε
(DIV ε∆(Prp,Prc)− γDIV ε∆(Prc,Prc))

where,

(13)DIV ε∆(Prp,Prc) = Eyp∼Prp(θp)[Ezk∼Pr(z)[∇θcSk(ŷa)

−∇θcSk(ŷc)]]

(14)DIV ε∆(Prc,Prc) = Ezk∼Pr(z)[Ez′
k∼Pr(z)[∇θcSk(ŷb)

−∇θc
Sk

′
(ŷ′c)]]

and,

ŷc = arg max
y∈Y

Sk(yc)

ŷ′c = arg max
y∈Y

Sk
′
(yc)

ŷa = arg max
y∈Y

Sk(yc)± ε∆(yp, ŷc)

ŷb = arg max
y∈Y

Sk(yc)± ε∆(ŷc, ŷ
′
c)

(15)

In our experiments, we fix the temperature parameter ε as
ε = +1.

Intuition for the gradient computation: We now present
an intuitive explanation of the computation of gradient, as
given in equation (12). For an input x and two noise
samples zk, zk′ , the conditional net outputs two scores
Sk(yc) and Sk′(yc), with the corresponding maximum scor-
ing outputs ŷc and ŷ′c. The model parameters θc are
updated via gradient descent in the negative direction of
∇θc

DISCε∆(Prp(θp),Prc(θc)).
• The term DIV ε∆(Prp,Prc) updates the model parameters

towards the maximum scoring prediction ŷc of the score
Sk(yc) while moving away from ŷa, where ŷa is the
sample corresponding to the maximum loss augmented
score Sk(yc) ± ε∆(yp, ŷc) with respect to the fixed
prediction distribution samples yp. This encourages the
model to move away from the prediction, which provides
high loss with respect to the pseudo ground truth labels.

• The term γDIV ε∆(Prc,Prc) updates the model towards
yb and away from the ŷc. Note the two negative signs
giving the update in the positive direction. Here yb is the
sample corresponding to the maximum loss augmented
score Sk(yc) ± ε∆(ŷc, ŷ

′
c) with respect to the other

prediction ŷ′c, encouraging greater diversity between ŷc
and ŷ′c.

Training algorithm for conditional net: Pseudo-code for
training the conditional network for a single sample from
weakly supervised data is presented in algorithm 1 below. In
algorithm 1, statements 1 to 3 describe the sampling process
and computing the loss augmented prediction. We first sample
K different predictions ŷkc corresponding to each noise vector
zk in statement 2. For the sampled prediction ŷkc we compute
the maximum loss augmented score Sk(yc)±ε∆(yp, ŷc). This
is then used to find the loss augmented prediction ŷa given in
statement 3.

In order to compute the gradients of the self diversity of
conditional distribution, we need to find the maximum loss
augmented prediction yb. Here, the loss is computed between
a pair of K different predictions of the conditional net that we
have already obtained. This is shown by statements 4 to 7 in
algorithm 1.

For the purpose of optimizing the conditional net using
gradient descent, we need to find the gradients for the objective
function of the conditional net defined in equation (16) of
the main paper. The computation of the unbiased approximate
gradients for the individual terms in the objective function
is shown in statement 8. We finally optimize the conditional
net by the employing gradient descent step and updating the
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model parameters by descending to the approximated gradients
as shown in statement 9 of algorithm 1.

Algorithm 1: Conditional net training algorithm
Input : Training input (x,a) ∈ W , and prediction net

output yp
Output: ŷ1

c , . . . , ŷ
K
c , sample K predictions from the

model

1 for k = 1 . . .K do
2 Sample noise vector zk, generate output ŷkc :

ŷkc = arg max
y∈Y

Sk(yc)

3 Find loss augmented prediction ŷka w.r.t. output
from prediction net yp:

ŷka = arg max
y∈Y

Sk(yc)± ε∆(yp, ŷ
k
c )

4 Compute loss augmented predictions:
5 for k = 1, . . . ,K do
6 for k′ = 1, . . . ,K, k′ 6= k do
7 Find loss augmented prediction ŷkb w.r.t. other

conditional net outputs ŷkc :

ŷk,k
′

b = arg max
y∈Y

Sk(yc)± ε∆(ŷkc , ŷ
′
c)

8 Compute unbiased approximate gradients for
DIV ε∆(Prc,Prc) and DIV ε∆(Prc,Prc) as:

(16)
DIV ε∆(Prp,Prc) =

1

KB

K∑
k=1

B∑
i=1

[
∇θc
Sk(ŷ(i)

a )

−∇θc
Sk(ŷ(i)

c )
]

(17)

DIV ε∆(Prc,Prc)

=
2

K(K − 1)B

K∑
k,k′=1
k′ 6=k

B∑
i=1

[
∇θc
Sk(ŷ

(i)
b )

−∇θc
Sk

′
(ŷ(i)′

c )
]

Update model parameters by descending to the
approximated gradients:

θt+1
c = θtc − η∇θc

DISC∆(Prp(θp),Prc(θc))
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