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Abstract—We consider the problem of weakly supervised
object detection, where the training samples have various types
of inexpensive annotations. These annotations can indicate the
presence or absence of an object category or include count, point,
or scribble annotations. In order to model the uncertainty in the
location of the objects, we employ a dissimilarity coefficient based
probabilistic learning objective. The learning objective mini-
mizes the difference between an annotation agnostic prediction
distribution and an annotation aware conditional distribution.
The main computational challenge is the complex nature of the
conditional distribution, which consists of terms over hundreds
or thousands of variables. The complexity of the conditional
distribution rules out the possibility of explicitly modeling it.
Instead, we exploit the fact that deep learning frameworks rely
on stochastic optimization. This allows us to use a state of the art
discrete generative model that can provide annotation consistent
samples from the conditional distribution. Extensive experiments
on PASCAL VOC 2007, PASCAL VOC 2012, MS COCO 2014,
and MS COCO 2017 data sets demonstrate the efficacy of our
proposed approach.

I. INTRODUCTION

BJECT detection requires us to localize all the instances

of an object category of interest in a given image. In
recent years, significant advances in speed and accuracy have
been achieved by detection frameworks based on Convolu-
tional Neural Networks (CNNs) [1], [2], [3], [4], [5], [6], [7].
Most of the existing methods require a strongly supervised
data set, where each image is labeled with the ground-truth
bounding boxes of all the object instances. Given the high cost
of obtaining such detailed annotations, researchers have ex-
plored the weakly supervised object detection (WSOD) prob-
lem [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20]. The goal of Weakly Supervised Object Detection
(WSOD) is to learn an accurate detector using training samples
that are annotated with more cost-effective labels, such as
image-level, count, point, and scribble annotations. Image-
level annotations can be as simple as object category labels
that indicate the presence of an object, or they can include
richer information like per-class object counts, which offer
slightly more detailed supervision. Additionally, point and
scribble annotations provide a more refined level of guidance
by indicating specific object locations (points) or rough object
boundaries (scribbles). Although these annotations come at a
marginally higher cost than image-level labels, as we shall
see, they significantly improve the model’s ability to localize
objects more accurately during training.
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Given the wide availability of such cheaper-to-obtain labels,
WSOD offers a cost-effective and highly scalable learning
paradigm. However, this comes at the cost of introducing
uncertainty in the location of the object instances during
training. For example, consider the task of detecting a car.
Given a training image annotated with only the presence of
a car, we still face the challenge of identifying the precise
bounding box for the car. This challenge is somewhat mit-
igated when additional annotations, such as object counts,
points, or scribbles, are available. Object count annotations
provide information on the number of instances present, re-
ducing ambiguity about the number of objects to detect. Point
annotations, by marking specific locations within the object,
help in narrowing down the potential area where the object
is located. Scribble annotations, which roughly outline the
object, offer even more spatial guidance, making it easier
to determine the approximate shape and boundary of the
object. Despite these enhancements, WSOD must still contend
with the inherent uncertainty introduced by the lack of full
supervision as the extent of an object is not known.

In order to effectively model uncertainty in weakly super-
vised learning, Kumar et al. [21] proposed a probabilistic
framework that models two distributions: (i) a conditional
distribution, which represents the probability of an output
conditioned on the given annotation during training; and (ii) a
prediction distribution which represents the probability of an
output at test time. The parameters of the two distributions
are estimated jointly by minimizing the dissimilarity coef-
ficient [22], which measures the distance between any two
distributions using a task specific loss function.

The aforementioned dissimilarity coefficient based frame-
work has provided promising results in domains where the
conditional distribution is simple to model (that is, consists
of terms that depend on a few variables at a time) [21], [23].
However, WSOD poses greater difficulty due to the complexity
of the underlying conditional distribution. Specifically, given
the hundreds or even thousands of bounding box proposals
for an image, the annotation constraint imposes a term over
all of these bounding box proposals such that at least one of
them corresponds to the given weak labels, such as image-
level, count, point, or scribble annotations. This leads to a
challenging scenario where the distribution is not factorizable
over the bounding box proposals. While previous works have
approximated this uncertainty as a fully factorized distribution
for computational efficiency, we argue that such a choice leads
to poor accuracy.
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To overcome the difficulty of a complex conditional dis-
tribution, we make the key observation that deep learning
relies on stochastic optimization. Therefore, we do not need to
explicitly model this complex distribution but simply estimate
the distribution using samples. This observation opens the door
to the use of appropriate deep generative models such as the
Discrete Disco Net [24], [25].

We test the efficacy of our approach on the challenging
PASCAL VOC 2007, 2012, and MS COCO 2014 data sets.
To generate the weakly supervised data sets, we discard the
bounding box annotations, keeping only the image-level labels
and, optionally, keeping the per-class object count, points,
or scribbles. Using simple image-level labels we achieve
58.1%, 55.4%, 28.6%, and 28.9% detection mAP@0.5 on
PASCAL VOC 2007, 2012, MS COCO 2014 and 2017 data
sets respectively, significantly improving the state-of-the-art on
all the data sets. Using count supervision provides an average
increase of 2.3% detection mAP@0.5 across all data sets.
Additionally, using point and scribble annotations we obtain a
further increase of 3.3%, and 0.8% detection mAP@0.5 on MS
COCO 2014 data set respectively giving state-of-the-art results
for WSOD using various types of inexpensive annotations.

This work builds on our previously peer-reviewed re-
search [26] by extending our formulation to incorporate better
initialization and spatial cluster regularization, which require a
new inference algorithm for the conditional distribution. This
allows us to sample more accurate bounding box samples from
the conditional distribution. We also introduce a simple cur-
riculum learning based optimization algorithm. Our approach
is versatile and can integrate various weak labels, such as
image-level, count, point, or scribble annotations. We present
additional experiments on the MS COCO 2014 and MS COCO
2017 datasets using different backbone architectures, which
lead to a significant improvement in our results.

To summarize, we make the following contributions.

o A unified weakly supervised framework to train object
detectors with varying levels of weak labels, such as
image-level, count, point, and scribble annotations.

« Efficiently model the complex non-factorizable, annota-
tion aware, spatially consistent conditional distribution
using the deep generative model, the Discrete DISCO Net.

o Empirically show the importance of modeling the uncer-
tainty in the annotations in a single unified probabilistic
learning objective, the dissimilarity coefficient.

o State-of-the-art performance for the task of WSOD on
challenging PASCAL VOC 2007, PASCAL VOC 2012,
MS COCO 2014, and MS COCO 2017 data sets.

II. RELATED WORK

Conventional methods often treat WSOD as a Multiple
Instance Learning (MIL) problem [27] by representing each
image as a bag of instances (that is, putative bounding
boxes) [28], [29], [30], [31], [32]. The learning procedure
alternates between training an object classifier and selecting
the most confident positive instances. However, these methods
are susceptible to poor initialization. To address this, different
strategies have been developed, which aim to improve the

initialization [30], [33], [34], [35], regularize the model with
extra cues [28], [29], or relax the MIL constraint [32] to make
the objective differentiable. These hard-MIL based methods
have demonstrated their effectiveness, especially when CNN
features are used to represent object proposals [29]. However,
these models are not end to end trainable and do not explicitly
model the uncertainty.

A more interesting line of work is to integrate MIL strategy
as deep networks such that they are end to end trainable [8],
[9], [15], [16], [18], [19], [36], [37]. In their work, Bilen
et al. [8] proposed a smoothed version of MIL that softly
labels object proposals instead of choosing the highest scoring
ones. Building on their work, Tang et al. [15] refine the
prediction iteratively through a multi-stage instance classifier.
Gao et al. [11] presents a greedy approach to training a
WSOD using per-class object count. Ren et al. [38] presents
a unified framework that can utilize all weakly supervised
labels, such as image-level supervision, point supervision, and
scribble supervision, but they don’t consider count supervision.
Chen et al. [39] presented their work that leverages point
annotations to train object detectors. In contrast, we propose a
unified framework that can learn from any weakly supervised
labels. Zhang et al. [18] add curriculum learning using the
MIL framework. In our formulation, we explicitly incorporate
curriculum learning based on object instance count. Tang et
al. [40] proposes to cluster similar object proposals to better
distinguish between the object and background noise. In our
framework, we cluster object proposals such that the number
of clusters are consistent with object count. Other end-to-
end trainable frameworks for WSOD employ domain adapta-
tion [13], [30], expectation-maximization algorithm [10], [17]
and saliency based methods [12]. Although these methods are
end to end trainable, they not only model a single distribution
for two related tasks but also model the complex distribution
with a fully factorized one. This design choice makes these
approaches sub-optimal as what we truly want is to model a
distribution that enforces at least one bounding box proposal
corresponding to the given weak label.

To enhance weakly supervised detectors, some approaches
combine them with strongly supervised ones, typically using
predictions from the weakly supervised detector as pseudo-
strong labels to train a strongly supervised network [15], [38],
[41], [42], [43], [44], [45]. However, this usually involves a
unidirectional connection between the two. Wang et al. [37]
propose a collaborative training approach for weakly and
strongly supervised models, similar in spirit to our use of
two distributions, though they fully factorize their weakly
supervised detector. Yin et al. [45] employ a teacher-student
network, using an ensemble of students for diverse pseudo
ground truth, but without explicitly modeling uncertainty and
using a fully factorized distribution. In contrast, we model
uncertainty in the conditional distribution to ensure annotation
consistency. The improvements reported in these works high-
light the importance of modeling separate distributions. In this
work, we explicitly define and jointly train two distributions,
minimizing the dissimilarity coefficient [22] based objective
function.
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III. MODEL
A. Notation

We denote an input image as x € RUXWx3) where H
and W are the height and the width of the image respectively.
For the sake of simplifying the subsequent description of our
approach, we assume that we have extracted B bounding
box proposals from each image. In our experiments, we use
Selective Search [46] to obtain the aforementioned bounding
boxes. Each bounding box proposal, b(), can belong to one of
C' +1 categories from the set {0, 1,...,C}, where category 0
is background, and categories {1,...,C} are object classes.

We denote the weak annotation by a € 0 U Z™. Here,
al¥) = r if image x contains r instances of the j-th object.
We assume r = 1 where only object category labels are
provided and count information is absent. Furthermore, we
denote the unknown bounding box labels by y = {y® |
y® €{0,...,CYB Ni=1,... B}, where y(*) = j if the i-th
bounding box b() is of the j-th category. A weakly supervised
data set W = {(x;,a;) | ¢ = 1,..., N} contains N pairs of
images x; and their corresponding image-level labels a;. For
point and scribble annotations, we retain only those bound-
ing box proposals that fully encompass the annotation. This
approach ensures their compatibility with count supervision.

B. Probabilistic Modeling

Given a weakly supervised data set JV, we wish to learn an
object detector that can predict the bounding box labels y of
a previously unseen image. Due to the uncertainty inherent in
this task, we advocate the use of a probabilistic formulation.
Following [21], [23], we define two distributions. The first one
is the prediction distribution Pr,(y|x;6,), which models the
probability of the bounding box labels y given an input image
x. Here 6, are the parameters of the distribution. As the name
suggest, this distribution is used to make the prediction at test
time.

In addition to the prediction distribution, we also construct
a conditional distribution Pr.(y|x,a;0.), which models the
probability of the bounding box labels y given the input image
x and its weak annotations a. Here 6, are the parameters of the
distribution. The conditional distribution contains additional
information, namely the presence of foreground objects in
each image, or optionally object instance count or localization
information through point or scribble annotations. Thus, we
can expect it to provide better predictions for the bounding
box labels y. We will use this property during training in
order to learn an accurate prediction distribution using the
conditional distribution. The details on the modeling of the
two distributions are discussed below.

1) Prediction Distribution: The task of the prediction dis-
tribution is to accurately model the probability of the bounding
box labels given the input image. Taking inspiration from
the supervised models [2], [3], [7], we assume independence
between the probability of the output for each bounding box
proposal. Therefore, the overall distribution for an image
equals the product of the probabilities of each proposal,

B
Pr,(y|x; 0,) = HPrp(y(i”x;ep)' (1)
i=1

We model this distribution using the Fast-RCNN architec-
ture [2] (see Figure 1(a)). As the prediction distribution is
specified by a neural network, we henceforth refer to it as the
prediction net. In this setting, the parameters of the distribution
0, are the weights of the prediction net.

2) Conditional Distribution: Given B bounding box pro-
posals for an image x and the weak annotation a, the con-
ditional distribution Pr.(y|x,a;0.) models the probability
of bounding box labels y under the constraint that they are
compatible with the annotation a. Specifically, we divide the
B proposals into multiple clusters. Each cluster of bounding
boxes corresponds to a foreground object. The total number
of clusters of each foreground class should be equal to their
image-level annotation a’ = r.

Note that due to the requirement that the bounding box
labels y are compatible with the annotation a, the conditional
distribution cannot be trivially decomposed over bounding box
proposals. This is in stark contrast to the simple prediction
net, which uses a fully factorized distribution. If one were to
explicitly model the conditional distribution, then one would
be required to compute its partition function during training,
which would be prohibitively expensive. To alleviate this
computational challenge, we make a key observation that
in practice we only need access to a representative set of
samples from the conditional distribution. This opens the door
to the use of Discrete DISCO Net [24]. In what follows, we
briefly describe Discrete DISCO Nets while highlighting their
applicability to our framework.

a) Discrete DISCO Net: Discrete DISCO Net [24] is
a deep probabilistic framework that implicitly represents a
probability distribution over a discrete structured output space.
The strength of the framework lies in the fact that it allows us
to adapt a pointwise deep network (a network that provides
a single pointwise prediction) to a probabilistic one by the
introduction of noise.

In the context of our setting, consider the modified Fast-
RCNN network in Figure 1(b) for the conditional distribution.
Once again, as we are using a neural network, we will hence-
forth refer to it as the conditional net. The parameters of the
conditional distribution 8, are the weights of the conditional
net. The colored filters in the middle of the network represent
the noise that is sampled from a uniform distribution. Each
value of the noise filter zj, results in a different score function’
Fr,.(8:) € RE*Y for each bounding box proposal u, and
the corresponding putative label y,. We generate K different
score functions using K different noise samples. These score
functions are then used to sample the corresponding bounding
box labels y* such that all ground truth labels are included in
it. This enables us to generate samples from the underlying
distribution encoded by the network parameters. Note that
obtaining a single sample is as efficient as a simple forward
pass through the network. By placing the filters sufficiently
far away from the output layer of the network, we can learn a
highly non-linear mapping from the uniform distribution (used

IThe use of score function in this paper should not be confused with the
scoring rule theory, which is used to design the learning objective of DISCO
Nets.
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Fig. 1. The overall architecture. (a) Prediction Network: a standard Fast-RCNN architecture is used to model the prediction net. For an input image, bounding
box proposals are generated from selective search [46]. Features from each of these proposals are computed by the region of interest (ROI) pooling layers,
which are then passed through the classifier and regressor to predict the final bounding box. (b) Conditional Network: a modified Fast-RCNN architecture
is used to model the conditional net. For a single input image x and three different noise samples {z1, 22,23} (represented as red, green and blue matrix),
three different bounding boxes {y(l) vy, y(3)} are sampled for the given image-level label (bird in this example). Here the noise filter is concatenated as
an extra channel to the final convolutional layer. For both the networks, the initial conv-layers are fixed during training. Best viewed in color.

to generate the noise filter) to the output distribution (used to
generate bounding box labels).

In what follows, we will discuss how to redefine the score
function }"ff,yu(OC) to obtain a final score function such that
it is used to sample the bounding box proposal y*.

Initialization by Class Activation Maps In order to in-
corporate prior knowledge about potential object location, we
weigh the score function Jr]f,yu, (6.) with class activation maps
(CAMS) C(ye) [471, [48].

gs,yu (ye) =Clye) x ]:f,yu (6,). )

While, we can employ any CAM algorithm, in our experi-
ments, we employ Layer-CAM [49]. When no CAM based
algorithm is used, we set C(y¢) = 1.

Cluster Construction In order to effectively use the count
information whenever they are available, we propose to cluster
the bounding box proposals such that the number of clusters is
equal to the count annotation. To form clusters, the proposals
are sorted by their object confidences g’;’yu (y.) and the
following steps are iteratively performed:

1) Construct a cluster using the proposal with the highest

object confidence for the r non-overlapping instances.
This ensures that the number of clusters is consistent
with image-level label al/) = r.

2) Find proposals that overlap with a proposal in the cluster

by more than 0.7 and merge them into the cluster.

All object instances not forming part of the foreground objects
are considered background boxes. The pseudocode for cluster
construction is presented in algorithm 1.

Spatial cluster regularization For each bounding box in
a cluster corresponding to the foreground object instance, we
can redefine our score function such that highly overlapping
proposal bounding boxes should have similar scores and labels

B"\u
gre (ve) =Gty + > wiGiy Hye), )
i=1
where n is the iterator, B” are the bounding boxes belonging to
a particular cluster, and w; = IOU (by, b;) is the IOU between
the two proposal boxes. Equation (3) is iteratively updated
until the scores, weighted by their IOUs, converge. While
the algorithm guarantees convergence to a local minimum,
in practice, we limit the process to 5 iterations or until the
scores stabilize. Empirical evidence shows that 5 iterations are
typically sufficient for convergence, providing a good balance
between accuracy and speed.
Annotation consistent constraint Finally, we would like
to add a constraint such that there must exist at least one
bounding box in each clique that satisfies the annotation a.

B
SMye) =G5 (ve) — Halye), &)
i=1
where,
0 ifvje{l,...,C}st. al) =1
Hi(ye) = Jie{l,...,B} st. y® =4, (5)

oo otherwise.
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Algorithm 1: Cluster Construction

Algorithm 2: Conditional net inference algorithm

Input: Bounding boxes B, scores Qk L(ye)s
annotations at) = r, ToU threshold T
Output: Dictionary of class specific clusters with keys
a?) and values a list of exactly r clusters
1 Initialize a dictionary ‘dict* with keys a¥/) and values
an empty list;
2 foreach annotation at’) > 0 do
// Initialize variables
Initialize an empty list ‘clusters*;
Initialize a boolean array ‘used_boxes* of length B
to track used boxes;
5 Sort boxes and scores based on the maximum
scores corresponding to a/) in descending order;
// Create non-overlapping clusters

6 foreach box b in sorted order do

7 if number of clusters > r then
8 | break;

9 if b is not used then

10 Create a new cluster with b;
1 Mark b as used;

12 foreach remaining box V' do
13 if b’ is not used and IoU(b, b’) > T then
14 Add ¥ to the cluster;
15 Mark b’ as used;

16 Add the cluster to ‘clusters;

// Ensure exactly r clusters by
merging or splitting

7 if number of clusters < r then

18 while number of clusters < r do

19 Split the largest cluster into two smaller
clusters;

0 else if number of clusters > r then

1 while number of clusters > r do

2 Merge the two most similar or overlapping
clusters;

3 ‘dict‘[al?] = “clusters;

4 return ‘dict’;

Given the scoring function in equation (4), we compute the
k-th sample as

yi = argmaxycyS*(ye). (6)

Note that in equation (6) the arg max needs to be computed
over the entire output space ). A naive brute force algorithm
for this would be computationally infeasible. However, by
using the structure of the higher order term Hj, we can design
an efficient yet exact algorithm for equation (6). Specifically,
we assign each bounding box proposal u to its maximum
scoring object class. If all the ground truth annotations a
are not present in the generated bounding box labels, then
we sample the bounding box that has the highest score
corresponding to the foreground label. The pseudocode for
conditional net inference is presented in algorithm 2.

For point and scribble supervision, we retain only the
bounding box proposals that fully contain the annotations. This

Input: A dictionary of class specific clusters ‘dict",
original scores S*(y,), annotations at/) = r
Output: A dictionary Y containing a list of r
maximum scoring boxes for each a?)
1 foreach annotation a'%) in ‘dict* do
2 Initialize an empty list ‘max_boxes*;
3 foreach cluster B" in ‘clusters‘ do
/+ Iterative algorithm for
spatial cluster

regularization */
4 repeat
5 for b,,b; € B" do
k k,n—
Guy,(ve) = Guy. ' (ve)
B"\u
G 1
+ 2 Wiy v
6 until Q{j:;’u (ye) has converged,
/* Greedily select the maximum
scoring bounding box */
7 Y[al)] = arg max, ¢ gr g’;;;u (¥e)

8 return dictionary Y,

approach not only narrows the problem’s search space but also
ensures compatibility with object instance count supervision.

IV. LEARNING OBJECTIVE

In order to estimate the parameters of the prediction and
conditional distribution, 8, and 0., we define a unified prob-
abilistic learning objective based on the dissimilarity coeffi-
cient [22]. To this end, we require a task specific loss function,
which we define next.

A. Task Specific Loss Function

We define a loss function for object detection that decom-
poses over the bounding box proposals as follows:

Ay1,y2) = BZA v v$). (M
i=1

Following the standard practice in most modern object detec-
tors [50], A(y1 7ygl)) is further decomposed as a weighted
combination of the classification loss and the localization loss.
We use A to denote the loss ratio ( ratio of the weight of
localization loss to the weight of classification loss). We use a
simple 0—1 loss as our classification loss A, and smooth L1
[2] for our localization loss Ay,.. Formally, the task specific
loss is given by,

Ay y8) = Ay y$) + A (000, 657). (®)

Here, b(i) and béi) are the corresponding bounding box pro-
posals for y(z) and y;).
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B. Objective Function

The task of both the prediction distribution and the con-
ditional distribution is to predict the bounding box labels.
Moreover, as the conditional distribution utilizes the extra
information in the form of the image-level label, it is expected
to provide more accurate predictions for the bounding box
labels y. Leveraging on the task similarity between the two
distributions, we would like to bring the two distributions close
to each other, so that the extra knowledge of the conditional
distribution can be transferred to the prediction distribution.
Taking inspiration from [21], [23], we design a joint learning
objective that can minimize the dissimilarity coefficient [22]
between the prediction distribution and conditional distribu-
tion. In what follows, we briefly describe the concept of
dissimilarity coefficient before applying it to our setting.

Dissimilarity Coefficient: The dissimilarity coefficient be-
tween any two distributions Pry(-) and Pra(-) is determined
by measuring their diversities. The diversity of a distribution
Pri(-) and a distribution Pro(:) is defined as the expected
difference between their samples, where the difference is
measured by a task-specific loss function A’(-,-). Formally,
we define the diversity as,

DIVai(Pr1, Pra) =By, pr, () Eyapracy ©)

[A/(Yh Y2)H~

If the model correctly brings the two distributions close to
each other, we could expect the diversity DIVa:(Pry,Prs) to
be small. Using this definition of diversity, the dissimilarity
coefficient of Pr; and Pry is given by,

DISC’A/(Prl,Prg) ZDIVA/(Pl‘l,PI‘Q)
— ’}/DIVA/ (Pl"g, PI"Q)
- (]‘ - V)DIVA/(Prlv Prl),

(10)

where v € [0,1]. In other words, the dissimilarity coefficient
between Pr; and Prs is the difference between the diversity
of Pr; and Pry, and a convex combination of their self-
diversities. The self-diversity terms encourage the samples
from each of the two distributions to be diverse, thus better
representing the uncertainty of the task. In our experiments,
we use 7 = 0.5, which results in a symmetric dissimilarity
coefficient between two distributions.

Learning Objective for Detection: Given the above def-
inition of dissimilarity coefficient, we can now specify our
learning objective for the task specific loss A tuned for object
detection (8) as

0,0, = argmin DISCA(Pry(0,),Pr.(6.)),
0,.0

prYc

an

where each of the diversity terms can be derived from equation
(9). As discussed in Section III-B, the conditional distribution
is difficult to model directly. Therefore, the corresponding
diversity terms are computed by stochastic estimators from K

samples ¥* of the conditional net. Thus, each of the diversity
terms can be written as?

LYy (12)
- ﬁ ZZ ZPrP(YéZ),Hp)A(yg)7 Aiﬂ (z))’
i=1 k:lyz(f)
! Sy K, (1)
= ok (1) o0
DIVa(Pres Pro) = e~y 22 2 A0y ™),
k,k'=11=1
k'#£k

DIVA(Prp, Prp)

B
1 i % i i
= 522 2P0, Py 0,)A( ).y ).
i= ()

i y,g,)
(14)

Here, DIVA(Pr,,Pr.) measures the diversity between the
prediction net and the conditional net, which is the expected
difference between the samples from the two distributions as
measured by the task specific loss function A. Here Pr,, is
explicitly modeled, hence the expectation of its sample can be
computed easily. However, as Pr. is not explicitly modeled,
we compute the required expectation by drawing K samples
from the distribution. Likewise, DIVa (Pr., Pr.) measures the
self diversity of the conditional net. We draw K samples from
the distribution to compute the required expectation. Also, the
self diversity of the prediction net DIV (Pry, Pr,) can be
exactly computed as Pr,, is explicitly modeled.

V. OPTIMIZATION

As we employ deep neural networks to model the two
distributions, our objective function (11) is ideally suited
to be minimized by stochastic gradient descent. While it
may be possible to compute the gradients of both networks
simultaneously, in this work we use a simple coordinate
descent optimization strategy. In more detail, the optimization
proceeds by iteratively fixing the prediction network and
learning the conditional network, followed by learning the
prediction network for the fixed conditional network.

The main advantage of using the iterative training strategy
is that it results in an approach similar to the fully supervised
learning of each network. This in turn allows us to readily
use the algorithm developed in Fast-RCNN [2] and Discrete
Disco Net [24]. The outputs from the fixed network are
treated as the pseudo ground truth bounding box labels for
the other network. Furthermore, the iterative learning strategy
also reduces the memory complexity of learning as only one
network is trained at a time.

For the case where object count labels are present, we
employ a simple curriculum-learning based strategy. We first
iteratively train the two networks for images with images that
have a single object count. Next, we progressively increase the
number of objects present in the training image.

2Details in Appendix A
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A. Optimization over Prediction Distribution

For a fixed set of parameters 8. of the conditional network,
the learning objective of the prediction net corresponds to the
following:

0, = argmin DIVA (Pr,,, Pr,) — (1 — v)DIVA(Prp, Pry).

P 5,

15)
Note that, due to the use of dissimilarity coefficient, the above
objective differs slightly from the one used for Fast-RCNN [2].
However, importantly, it is still differentiable with respect to
0,. Hence, the prediction net can be directly optimized via
stochastic gradient descent.

B. Optimization over Conditional Distribution

For a fixed set of parameters 6, of the prediction network,
the learning objective for the conditional network corresponds
to the following,

0 = argmin DIVA(Pr,,, Pr.) — yDIVA(Pr.,Pr.). (16)
6.
The above objective function is similar to the one used in
[24] for supervised learning of Discrete DISCO Nets. As our
conditional net employs a sampling procedure over the scoring
function S*(y..), objective (16) is non-differentiable. However,
as observed in [24], it is possible to compute an unbiased
estimate of the gradients using the direct loss minimization
technique [51], [52]. Therefore, the conditional net can be
optimized using stochastic gradient descent. We present the
technical details of optimization, which are similar to those in
[24], in appendix B.

C. Visualization of the learning process

Figure 2 provides the visualization of the performance of
the two networks over the different iterations of the itera-
tive learning procedure. Figure 2(a) demonstrates a simple
example where single instance of each object is present and
only image-level annotations are present during training. Fig-
ure 2(b) demonstrates a more complex example where several
instances of the same object are present and only image-
level annotations are present during training. Figure 2(c) and
2(d) demonstrates the complex example in presence of count
annotations and point annotations during training respectively.
The estimated bounding box labels from the prediction net
and those sampled from the conditional net are depicted.
For conditional net, we superimpose five different samples of
bounding box labels. If all the samples agree with each other
on bounding box labels, the bounding boxes will have a high
overlap, otherwise they will be scattered across the image.
For visualization purposes only, a standard non maximal
suppression (NMS) is applied with a score threshold of 0.7
on the output of the prediction net. However, note that the
non maximal suppression is not used during the training of
the prediction net. The two steps of the iterative algorithm
are described below in brief. For completeness, the details are
provided in Appendix B.

In order to visualize the learning process, let us first
consider the simple example (Figure 2(a)), where only image-
level annotations are present during training. We observe that

initially (in iteration 1), the conditional net’s samples for both
dog and bottle objects have high uncertainty, meaning the
samples are spread out and lack consensus. However, they are
broadly localized over the object, an information that can be
exploited by our algorithm. The same is also reflected in the
output of the prediction net, which is unable to detect either
object. Over the iterations, the knowledge from the conditional
net is transferred to the prediction net, and we see a gradual
improvement in the uncertainty of both the prediction net and
the conditional net, finally resulting in accurate localization of
both the objects.

Figure 2(b) presents a challenging example where multiple
instances of the object person are present, and only image-
level annotations are present during training. We observe that
initially the conditional net samples are extremely diverse (and
has high uncertainty). Some samples correctly localizes one
of the instances of the class person, but others span multiple
instances of that class. The output of the prediction net also
reflects this, with partial localization of one of the object
instances and incorrect localization that contains multiple
instances or no localization of an instance of the person
class. Over the iterations, the uncertainty of the prediction and
the conditional net reduces, and we see a better localization.
Finally, the conditional network has low uncertainty in its
samples, even though it misses several instances of the object.
The prediction net succesfully localizes several instances of the
class person, as it also learns from other images containing
the person class in the data set during iterative training.
However, we see that the final output of the prediction net
remains imperfect with some instances not localized and some
localization containing multiple instances of the same object.

In figure 2(c), we see the sample challenging example where
count annotations are present during training. We observe that
due to our cluster construction (section III-B2), we can now
take multiple samples from the conditional net. Although,
initially the uncertainty of the conditional net is high, the
samples obtained are better localized than the case where only
image-level annotations were present. Over the iterations, we
see the uncertainty in both the prediction and conditional nets
reducing. We note that in this case, many of the instances
are correctly localized but some instances are either partially
localized and some localization contains multiple instances.

Finally, in figure 2(d), we consider the challenging example
where point annotations are available. We observe that initially
the uncertainty of the prediction net is high, but the uncertainty
in the conditional net is low. Over the iterations, the informa-
tion present in the conditional net is successfully transferred to
the prediction net, where the final output accurately localizes
all instances of the same class.

VI. EXPERIMENTS
A. Data set and Evaluation Metrics

Data set: We evaluate our method on the challenging VOC
2007, and VOC 2012 in PASCAL VOC [53], and COCO
2014 and COCO 2017 in MS COCO [54] data sets. We
use the trainval set in VOC 2007 and VOC 2012 data sets
that has 5,011 and 11, 540 images respectively for 20 object
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a Prediction Net

’

gonditional Net

Fig. 2. Example of predictions of prediction net and conditional net. For prediction net, the visualization is after taking standard non maximal suppression
using standard score threshold = 0.7. Columns 1 and 3 are outputs of the prediction network while columns 2 and 4 are outputs from the conditional network.
Rows 1 and 4 represent the prediction of the two networks after the first iteration and rows 2 and 5 represent the prediction of the two networks after the
third iteration. Finally, rows 3 and 6 represent the prediction of the two networks after the sixth (final) iteration. Image set (a) demonstrates a simple example
where a single instance of each object type is present and image-level annotations are present during training. Image set (b) demonstrates a complex example
where several instances of a single object are present and only image level annotations are present during training. Image sets (c) and (d) demonstrate the
complex example in the presence of count and point supervision respectively. Each object class is represented by a different colored bounding box, where the
green box represents the person category and red and blue represent the bottle and dog categories respectively. Best viewed in color.

categories, and the test set contains 4,951 and 10,991 images object categories. COCO 2017 has 118, 287 images in the train
for evaluation. COCO 2014 data includes around 82,783 set and 5,000 images in the validation set.

images for training and 40,504 images for validation for 80 As we focus on weakly supervised detection, only image-
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level labels (/) are utilized during training. We retain instance
count information (C) for count supervision. For point anno-
tations (P), we use quasi-center point annotations, where the
center of the ground-truth bounding boxes serves as the point
annotation. However, if there is an overlap between bounding
boxes, we select the nearest non-overlapping point from the
center box. In cases where the point annotation falls outside
the object or is contained inside other bounding box, we do not
make corrections. For scribble (S) supervision, we adopt the
setup proposed by Ren er al. [38]. Note that Ren et al. [43]
provide scribble annotations only for COCO 2014 data set.
Therefore, for scribble supervision, we only consider COCO
2014 data set.

Evaluation Metric We use two metrics to evaluate our
detection performance on the PASCAL VOC data set. First,
we evaluate detection using mean Average Precision (mAP)
on the PASCAL VOC 2007 and 2012 test sets, following the
standard PASCAL VOC protocol [53]. Second, we compute
CorLoc [55] on the PASCAL VOC 2007 and 2012 trainval
splits. CorLoc is the fraction of positive training images in
which we localize an object of the target category correctly.
Following [53], a detected bounding box is considered correct
if it has at least 0.5 IoU with a ground truth bounding box.

MS-COCO presents a greater challenge compared to PAS-
CAL VOC, as it contains significantly more instances per im-
age (approximately 7 versus 2) and a larger number of classes
(80 versus 20). We report mAP results at IoU thresholds of 0.5
and 0.75, along with the more comprehensive AP metric. AP
is calculated as the average mAP across 10 IoU thresholds,
ranging from 0.5 to 0.95 in 0.05 increments.

B. Implementation Details

We use standard Fast-RCNN [2] to model prediction dis-
tribution and a modified Fast-RCNN to model the conditional
distribution, as shown in Figure 1(a). We use the ImageNet
pre-trained VGG16 Network [56] and ImageNet pre-trained
ResNet network [57] as the base CNN architectures for both
our prediction and conditional nets.

The Fast-RCNN architecture is modified by adding a noise
filter in its 5" conv-layer as an extra channel as shown
in Figure 1(b). A 1 x 1 filter is used to bring the number
of channels back to the original dimensions (512 channels).
No architectural changes are made to the prediction net.
The bounding box proposals required for the Fast-RCNN are
obtained from the Selective Search algorithm [46]. Results
based on the Region Proposal Networks are given in the
supplementary material.

For all our experiments we choose K = 5 for the condi-
tional net. That is, we sample 5 bounding boxes corresponding
to 5 noise filters, which are themselves sampled from a
uniform distribution. For all other hyper-parameters, we use
the same configurations as described in [2].

In order to initiate the training of our proposed framework,
we first train the conditional network using the thresholded
CAM output as a pseudo bounding box label. Specifically,
we threshold the CAM output at 0.7 and create a bounding
box that tightly encloses the resulting mask. When count

information (C') is available, we ensure that the number of
pseudo bounding boxes matches the count annotation. If point
(P) or scribble (S) annotations are available, we retain only
those bounding box proposals that contain the corresponding
point or scribble annotation.

C. Results

In this subsection, we first compare our method with the
current state-of-the-art approaches for detection and correct
localization tasks on the PASCAL VOC datasets, as well as
for detection task on the MS COCO datasets. Next, through ab-
lation experiments, we examine how the different components
used to redefine the score function and various terms in our
dissimilarity coefficient-based objective function contribute to
the improvement in accuracy.

1) Comparison with other methods: We compare our pro-
posed method with other state-of-the-art weakly supervised
methods with varying levels of weak supervision. The perfor-
mance on detection average precision and correct localization
metrics for the PASCAL VOC data sets and the detection
average precision metrics for the MS COCO data sets are
presented in table I. We employ two different backbones for
our networks, VGG-16 [56], and ResNet-50 [57]. Compared
with the other methods, our proposed framework achieves
state-of-the-art performance using a single model and using
the selective search for bounding box proposals across varying
levels of weak supervision. This demonstrates the efficacy and
generalizability of our proposed approach. We also observe
a consistent gain of accuracy (> 1%) when using a bigger
model that uses ResNet-50, over the baseline model that has
VGG-16 as its backbone. Although not surprising, this trends
demonstrate that our method is scalable and the accuracies
can further improve when using a bigger model that has better
representational capacity (such as ResNet-101 or ViT).

Using image level annotations (I), our method significantly
outperforms other state-of-the-art methods. Inspired by Bilen
et al. [8], prior arts [8], [15], [41], [42], [43], [44], [45]
employ a fully factorized distribution in MIL objective. We
empirically demonstrate the usefulness of modeling a complex
distribution. Compared to previous arts [15], [41], [42], [43],
[44], [45] that uses two different networks, one for pseudo
bounding box generation, and another Fast-RCNN [2] for
inference, our iterative training of both the networks using
a joint objective enables us to achieve superior performance.
Compared to CBL [45], that generates multiple pseudo bound-
ing box labels using an ensemble of student networks to train
a teacher network, we get better results by explicitly modeling
the uncertainty over the pseudo label generation process and
generating unbiased samples using the conditional network.

When we have access to instance count annotations (C'), our
results improve significantly over the image-level annotation
baseline. This is especially noticeable (+2.4% and +2.7% AP
for COCO 2014 and COCO 2017 respectively) for the MS
COCO data sets that have higher instance counts per image
compared to the PASCAL VOC data sets. This improvement is
attributed to the cluster construction and the use of curriculum
learning based on the instance count during training.
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART WSOD METHODS ON PASCAL VOC AND MS COCO DATA SETS.

Method Sup.  Backbone VOC 2007 VOC 2012 COCO 2014 COCO 2017
mAP CorLoc mAP CorLoc Avg. Precision, IoU: Avg. Precision, IoU:
0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75
WSDDN [8] 1 VGG16 34.8 53.5 — — 9.5 19.2 8.2 — — -
OICR [15] 1 VGG16 47.0 64.3 42.5 65.6 7.7 17.4 - - - -
WSOD? [41] 1 VGG16 53.6 69.5 47.2 71.9 10.8 22.7 - - - -
C-MIDN [42] 1 VGG16 52.6 68.7 50.2 71.2 9.6 21.4 - - - -
MIST [43] 1 VGG16 54.9 68.8 52.1 70.9 114 24.3 9.4 12.4 25.8 10.5
OD-WSCL [44] 1 VGG16 56.1 69.8 54.6 71.2 14.4 290 124 13.6 274 122
CBL [45] 1 VGG16 57.4 71.8 53.5 72.6 13.6 27.6 - - - -
PredNet (Ours) 1 VGG16 58.1 72.4 554 72.9 14.8 286 14.2 15.1 289 14.6
OICR [15] 1 R-50 50.1 - — — - — — — — -
OD-WSCL [44] 1 R-50 56.6 - - - 13.9 29.1 11.8 13.8 27.8 121
PredNet (Ours) 1 R-50 59.4 73.9 56.6 74.8 154 289 149 159 29.8 15.1
C-WSL [11] C VGG16 48.2 66.1 45.4 66.9 - - - - - -
PredNet (Ours) C VGG16 59.6 74.1 56.8 75.1 17.2 31,6 155 17.8 321 164
PredNet (Ours) C R-50 60.7 74.9 57.0 76.3 17.6 319 157 18.3 323  16.7
UFO? [38] P VGG16 - - - - 12.4 27.0 - 13.5 27.9 -
PredNet (Ours) P VGG16 60.1 74.4 57.2 75.4 19.0 349 179 19.6 352 193
P2BNet [39] P R-50 - - — — 19.4 43.5 — 22.1 47.3 -
PredNet (Ours) P R-50 61.0 75.4 574 75.7 19.9 36.0 18.7 20.7 36.5 20.1
UFO? [38] S VGG16 - - - - 13.7 29.8 - - - -
PredNet (Ours) S VGG16 - - — — 19.8 357 19.0 — — -
PredNet (Ours) S R-50 - - - - 21.1 37.8 20.2 - - -
Using point annotation (P), our method further improves the TABLE 11

baseline based on count supervision and achieves competitive
results overall. Again, this is again noticeable in the more
complex MS COCO data sets, where several instances of
the same object can be cluttered together, thus making the
ground truth point annotation more relevant. Using, scrib-
ble supervision (S), we further improve the results obtained
using count supervision owing to the use of more accurate
annotations. Note that due to our use spatial consistency, the
improvement achieved after using scribble supervision over
point supervision is not as high, thus highlighting the fact that
our spatial consistency term effectively captures the extent of
an object.

D. Ablation Experiments

In this section, we examine the impact of applying CAMs,
spatial regularization, and annotation consistency constraints
to redefine the score function on the COCO 2017 dataset,
where instance count information is available. Additionally, we
will explore the effects of the diversity coefficient terms and
the influence of curriculum learning within the same context.

1) Effect of redefining the score function: To obtain accu-
rate bounding box samples from the conditional network, we
redefined the score function by incorporating CAM scores,
spatial regularization, and an annotation consistency con-
straint. Table II illustrates the performance impact of each
component and their combinations.

Row 1 represents the baseline scenario, where the highest-
scoring bounding box is sampled from the conditional net-

ABLATION EXPERIMENT: DETECTION AVERAGE PRECISION ON COCO
2017 DATA SET WITH COUNT ANNOTATION (C') UNDER DIFFERENT
SETTINGS. CAM 1S CLASS ACTIVATION MAPS, SR IS SPATIAL
REGULARIZATION, AND AC 1S ANNOTATION CONSISTENT CONSTRAINT

CAM SR AC | COCO 2017 (AP (0.5:0.95))

12.8
v 14.9
14.3
13.6
16.9
15.6
152
17.8

AN

NN
SENENEEN

work. While the performance is comparable to other image-
level weakly supervised approaches [44].

Incorporating CAM scores yields a significant improvement
of 2.1%, underlining the importance of integrating strong
priors in the proposed method. Similarly, adding spatial regu-
larization alone leads to a notable performance boost of 1.5%.
This improvement can be attributed to spatial regularization’s
ability to address the common issue where bounding boxes
that cover only the most discriminative part of an object are
assigned the highest scores, thereby leading to the selection of
more accurate bounding boxes. When the model is constrained
to select bounding boxes that are consistent with annotations,
a further performance gain of 0.8% is observed. This suggests
that enforcing annotation consistency encourages more accu-
rate bounding box sampling.
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Moreover, the table demonstrates that these three compo-
nents are complementary to one another. When combined,
their performance improves beyond the individual gains, show-
ing an even more substantial boost in accuracy. The best
result, with an AP improvement of 5%, is achieved when
all three components—CAM scores, spatial regularization,
and annotation consistency—are used together to redefine the
score function. This indicates that the synergy between these
components is crucial for maximizing detection performance.

2) Effect of the diversity coefficient terms: In order to
understand the effect of various diversity coefficient terms
in our objective (10), we remove the self-diversity term in
one or both of our probabilistic networks (Pr. and Pr,). To
obtain a single sample from our conditional network, we feed
a zero noise vector (denoted by PW.). The prediction network
still outputs the probability of each bounding box belonging
to each class. However, by removing the self-diversity term,
we encourage it to output a peakier distribution (denoted
by PW,). Table III shows that both the self-diversity terms
are important to obtain the maximum accuracy. Relatively
speaking, it is more important to include the self-diversity
in the conditional network in order to deal with the difficult
examples. Moreover, this enforces a diverse set of outputs from
the conditional network, which helps the prediction network
to avoid overfitting the samples during training.

3) Effect of instance count based curriculum learning: We
examine the effect of curriculum learning, which leverages
count information (when available) to train the model with
increasingly complex images progressively. Implementing cur-
riculum learning results in a performance improvement from
59.4% to 59.6% on the VOC 2007 dataset. A more substantial
gain is observed on the more complex COCO 2017 dataset,
where the performance increases from 16.7% to 17.8%. Given
that COCO 2017 contains an average of 7 instances per image
(compared to VOC 2007 that has an average of 2 instances
per image), we argue that employing a simple curriculum aids
the model in learning better and more discriminative features
during the early stages of training. This enables the model
to better grasp the concept of an object, ultimately enhancing
its performance. These results also show that our proposed
approach is amenable to more complex data sets.

E. Additional Comments

Weakly supervised approaches have been shown to improve
performance when trained with extra data [38], CLIP align-
ment [58], or when using better region proposals such as
MCG [44] or using Segment Anything Model (SAM) [59].
We consider these approaches to be complementary to our
method and can be easily incorporated. However, the scope
of our study was to obtain the best performance using diverse
weakly supervised data without the need for external data.
Additionally, in their paper, Zhou et al. [58] uses ground
truth bounding boxes during training, violating the weakly
supervised setting. A similar issue is present in Seo et al. [59]
that uses SAM based proposals to obtain superior results.
However, SAM [60] itself is partially trained with ground
truth segmentation masks, thus violating the weakly supervised
setting.

TABLE III
DETECTION AVERAGE PRECISION (%) FOR VARIOUS ABLATIVE SETTINGS
ON COCO 2017 WITH INSTANCE COUNT ANNOTATION (C)

Pry, Pre
Method (proposed) Pry, PW. | PWy,Pr. | PW,, PW,
AP (0.5:0.95) 17.8 15.2 17.4 14.8

VII. DISCUSSION

We presented a novel framework to train an object detector
using a weakly supervised data set. Our framework employs
a probabilistic objective based on dissimilarity coefficient to
model the uncertainty in the location of objects. We show that
explicitly modeling the complex non-factorizable conditional
distribution is a necessary modeling choice and present an
efficient mechanism based on a discrete generative model,
the Discrete DISCO Nets, to do so. Extensive experiments
on the benchmark data sets have shown that our framework
successfully transfers the information present in the image-
level annotations for the task of object detection.

In future, we would like to investigate the use of active
learning, to further benefit our network in terms of the accu-
racy of the fully supervised annotations. This will help bridge
the performance gap between the strongly supervised detectors
and detectors trained using low-cost annotations.
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