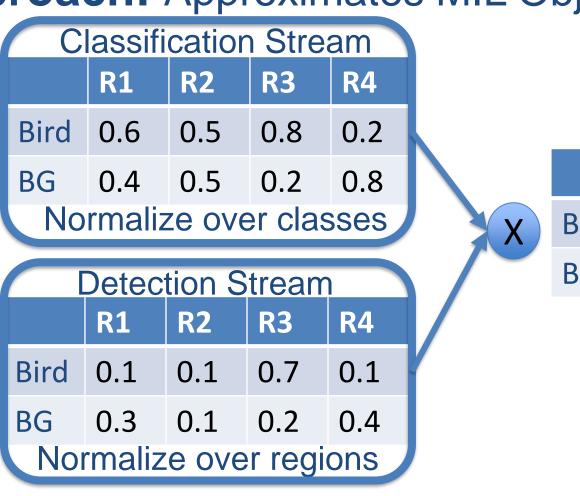


Dissimilarity Coefficient based Weakly Supervised Object Detection

1. Aim Localize objects with only image-level annotations at training time


2. Previous Works: Multiple Instance Learning (MIL) **Standard Deep Approach:** Approximates MIL Objective^[1]

Label: $\mathbf{a} = \{Bird\}$

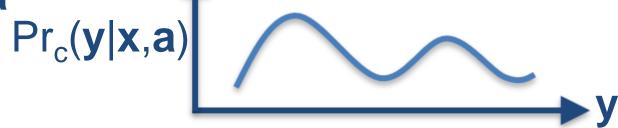
Region Proposals: B

CNN

> Does not explicitly enforce **annotation constraint** - Each image-level annotation should have at least one corresponding region proposal > Does not model uncertainty in the annotations

3. Overview

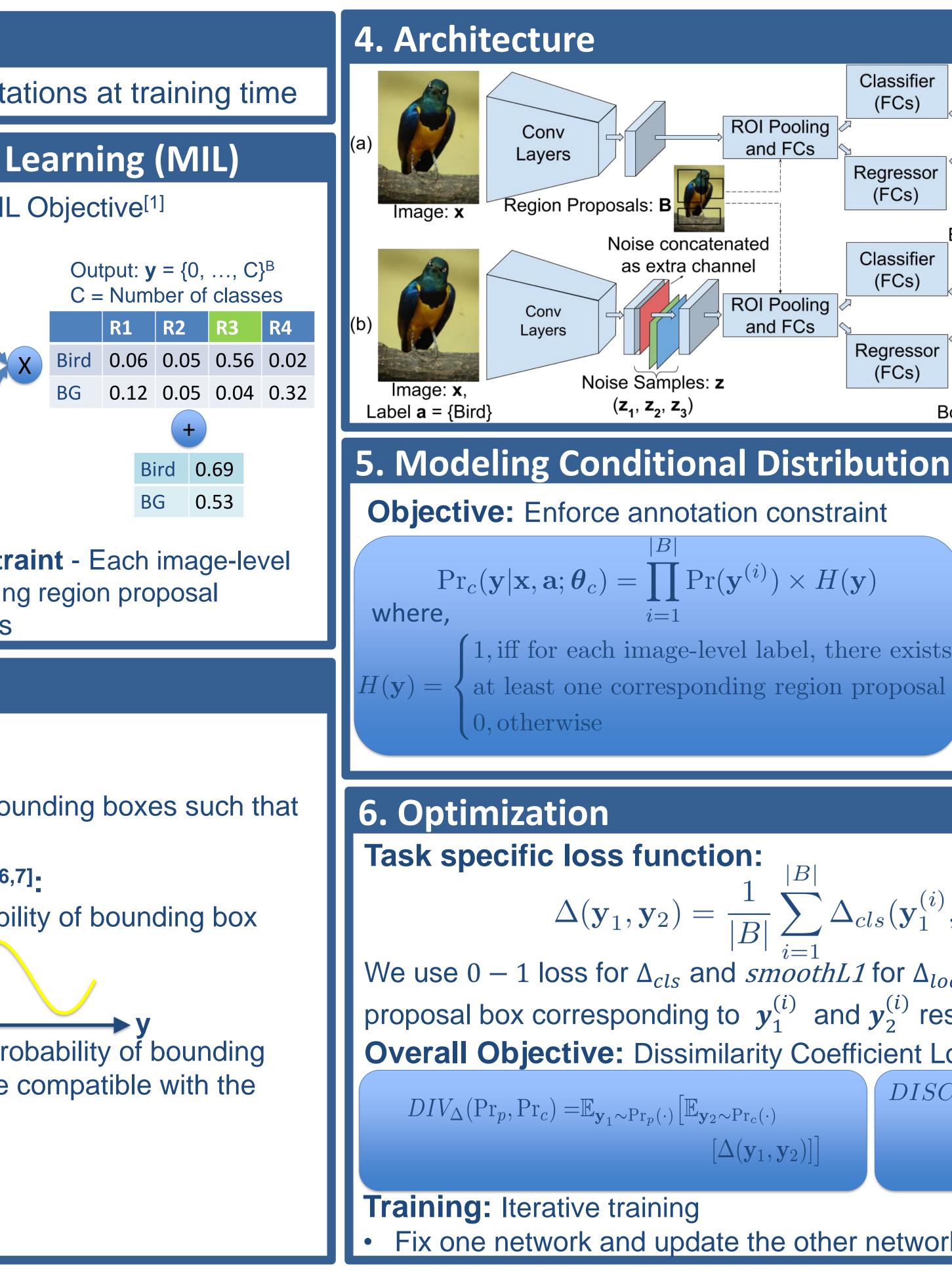
Tasks:


- 1. During inference, perform object detection
- 2. During training, model uncertainty over the bounding boxes such that it leverages the image-level annotations

Two separate distributions for two tasks^[6,7]:

1. A **prediction distribution** that models probability of bounding box labels y given the input image x

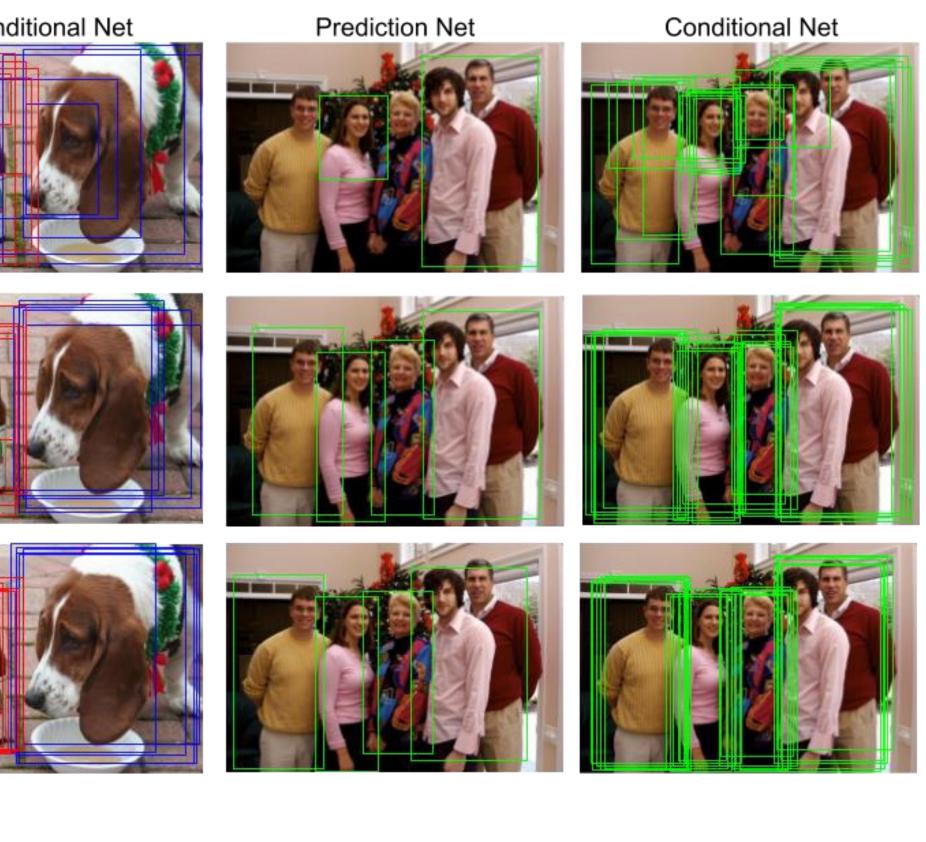
 $\Pr_p(\mathbf{y}|\mathbf{x})$


2. A **conditional distribution** that models the probability of bounding box labels y under the constraint that they are compatible with the annotation **a**

Ideally, the two distributions must match exactly

Aditya Arun¹, ¹CVIT, KCIS, IIIT, Hyderabad

C.V. Jawahar¹, ²University of Oxford



M. Pawan Kumar^{2,3} ³The Alan Turing Institute

	7. Experiments and Results					
Prediction Net $Pr_{p}(y x;\theta_{p})$ θ_{p} are the network parameters Predicted Sounding Box: y Fredicted $Pr_{p}(y x;\theta_{p})$ θ_{p} are the network parameters Conditional Net $Pr_{c}(y x,a;\theta_{c})$ θ_{c} are the network parameters	<text><text><image/><image/><image/><complex-block><complex-block><table-row><table-row><table-row><table-row></table-row></table-row></table-row></table-row></complex-block></complex-block></text></text>		<section-header></section-header>		<image/> <image/>	<section-header></section-header>
Image: Non-State R1 R2 R3 R4 Bird 1.3 1.5 1.8 0.2 BG 2.5 2.3 1.9 1.8 BG BG BG BG BG Sts R1 R2 R3 R4	Iter 6Results				<image/>	
Bird 1.2 0.7 2.1 1.5 BG 1.7 1.6 0.9 1.6	Method	mAP	Method	mAP	Method	mAP
BG BG Bird BG R3	WSDDN [1]	39.3	WSCCN $[4]$	37.9	WSDDN $[1]$	11.5
Score for sample 2	OICR [2]	47.0	OICR [2]	42.5	WSCCN [4]	12.3
	W2F [3]	52.4	W2F [3]	47.8	ML-LocNet [5]	16.2
	Ours	53.6	Ours	49.5	Ours	17.7
	VOC 200)7	VOC 20 ⁴	12	COCO 20 ²	14
$(i)_{1}, \mathbf{y}_{2}^{(i)}) + \Delta_{loc}(\mathbf{r}_{1}^{(i)}, \mathbf{r}_{2}^{(i)})$	Ablation Exp	perimen	ts:			
	Meth	od $ \Pr_{p_{1}}$	$\Pr_c \mid \Pr_p, PW$	$c \mid PW_p$	$, \Pr_c \mid PW_p, PW_c$	
Δ_{loc} . $r_1^{(i)}$ and $r_2^{(i)}$ are the region	mAP	52	.9 50.1	52	.6 49.5	
respectively.						
Loss	8. Reference	es				
$SC_{\Delta}(\Pr_{p},\Pr_{c}) = DIV_{\Delta}(\Pr_{p},\Pr_{c})$ $-\gamma DIV_{\Delta}(\Pr_{c},\Pr_{c})$ $-(1-\gamma)DIV_{\Delta}(\Pr_{p},\Pr_{p})$	[3] Zhang <i>et al</i> . W2F: [4] Diba <i>et al</i> . Weakly	e instance det A weakly-sup supervised ca ocnet: Improvi g human pose	ection network with or ervised to fully-superv ascaded convolutional ing object localization es from actions. In BM	line instance ised framew networks. Ir with multi-vie VC, 2018.	e classifier refinement. In C ork for object detection. In n CVPR, 2017. ew learning network. In EC	CVPR, 2018.

LONG BEACH CALIFORNIA June 16-20, 2019

