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1. Aim

Localize objects with only image-level annotations at training time

Output:y ={0, ..., C}B
C = Number of classes

 |RL_[R2 |R3 R4
‘y\ Bird 0.06 0.05 0.56 0.02
BG 0.12 0.05 0.04 0.32

+

Image: x Bird 0.69

Label: a = {Bird} BG 0.3. 0.1 0.2 | 0.4 = o=
Region Proposals: B Normalize over regions

» Does not explicitly enforce annotation constraint - Each image-level
annotation should have at least one corresponding region proposal
» Does not model uncertainty in the annotations

Bird 0.6 05 0.8 0.2

BG 04 05 0.2 0.8
Normalize over classes

Bird 0.1 0.1 0.7 0.1

3. Overview

Tasks:

1. During inference, perform object detection

2. During training, model uncertainty over the bounding boxes such that
it leverages the image-level annotations

Two separate distributions for two tasks!é.7:
1. Aprediction distribution that models probability of bounding box
labels y given the input image x

Pro(y[x)

Yy
2. A conditional distribution that models the probability of bounding
box labels y under the constraint that they are compatible with the
annotation a

Prc(ylxia) /\/\
y

ldeally, the two distributions must match exactly
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4. Architecture
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5. Modeling Conditional Distribution

Objective: Enforce annotation constraint — T T T x

| B | e BG 25 23 19 18
Pre(ylx,a;6.) = | [ Pr(y™) x H(y) | BG BG BG BG
. | ‘ Score for sample 1

m . ammfl__|RL |R2 [R3 [R4
gl Bird 1.2 07 21 1.5
BG 1.6 0.9

1.7 1.6
G o

Score for sample 2

6. Optimization

ygi)a yg)) T Aloc(rgi)v I'g))

i=1 . |
We use 0 — 1 loss for A.;; and smoothL1 for Ay, rgl) and rg)
proposal box corresponding to ygl) and ygl) respectively.

Overall Objective: Dissimilarity Coefficient Loss
DISCA(Pry,, Pr.) =DIVA(Pr,, Pr.)

are the region

Training: Iterative training

 Fix one network and update the other network using SGD until convergence
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7. Experiments and Results

Visualization
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Results
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Ablation Experiments:
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