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Abstract

Generative AI models, particularly Text-to-Video (T2V) sys-
tems, offer a promising avenue for transforming science
education by automating the creation of engaging and in-
tuitive visual explanations. In this work, we take a first
step toward evaluating their potential in physics educa-
tion by introducing a dedicated benchmark for explanatory
video generation. The benchmark is designed to assess how
well T2V models can convey core physics concepts through
visual illustrations. Each physics concept in our bench-
mark is decomposed into granular teaching points, with
each point accompanied by a carefully crafted prompt in-
tended for visual explanation of the teaching point. T2V
models are evaluated on their ability to generate accurate
videos in response to these prompts. Our aim is to sys-
tematically explore the feasibility of using T2V models to
generate high-quality, curriculum-aligned educational con-
tent—paving the way toward scalable, accessible, and per-
sonalized learning experiences powered by AI. Our evalu-
ation reveals that current models produce visually coherent
videos with smooth motion and minimal flickering, yet their
conceptual accuracy is less reliable. Performance in ar-
eas such as mechanics, fluids, and optics is encouraging,
but models struggle with electromagnetism and thermody-
namics, where abstract interactions are harder to depict.
These findings underscore the gap between visual quality
and conceptual correctness in educational video genera-
tion. We hope this benchmark helps the community close
that gap and move toward T2V systems that can deliver ac-
curate, curriculum-aligned physics content at scale. The
benchmark and accompanying codebase are publicly avail-
able at https://github.com/meghamariamkm/
PhyEduVideo.

1. Introduction

Creating educational videos is a resource-intensive task that
requires crafting clear explanations, designing effective vi-
suals, and ensuring both accuracy and engagement. In
subjects such as physics, videos are particularly powerful,
as they can vividly illustrate abstract ideas—such as mo-
tion, force, or energy—that are otherwise difficult to convey
through text alone.

In recent years, there has been growing interest in lever-
aging AI for educational content creation, ranging from
generating textual explanations to building interactive tu-
tors and, more recently, developing multimodal learning re-
sources [4, 10, 32, 36]. Initiatives such as Khan Academy’s
integration with GPT-4 [16] and Socratic by Google [8] ex-
emplify the promise of AI-powered tutoring, though they
remain largely focused on text-based assistance rather than
video generation. Similarly, research in intelligent tutor-
ing systems (ITS) has advanced adaptive instruction and
personalized feedback, but predominantly within textual or
structured interaction formats.

Meanwhile, recent progress in text-to-video (T2V) mod-
els [3, 5, 6, 12, 20, 25, 28, 30, 31, 37] offers the po-
tential to automatically generate rich visual explanations
from natural language prompts. While these models can
already produce aesthetically compelling videos, their ed-
ucational utility—particularly in physics—remains under-
explored [35, 38]. Harnessing them for instructional pur-
poses could substantially reduce the effort required to pro-
duce high-quality learning resources, while also broadening
access to scientifically accurate educational content.

To advance this vision, we introduce the first bench-
mark specifically designed to evaluate the capacity of T2V
models to generate videos that explain physics concepts in
pedagogically meaningful ways. Unlike existing bench-
marks [1, 2, 13, 14, 21, 22, 24, 39], which emphasize gen-
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Concept: Relative Motion
T01: Observers in different frames of reference perceive motion differently
Prompt: A person holds a ball while riding a skateboard. The skateboard moves 
forward. Another person stands still and watches. The ball looks still to the rider 
but looks like it's moving to the observer.

T04: Objects moving at the same speed and direction appear stationary 
relative to each other.
Prompt: Two toy cars move side by side at the same speed on a flat surface. The 
camera moves along with them, showing the cars staying aligned and appearing still 
relative to each other as the background shifts.

T03: Relative motion in different direction
Prompt: Two trains move on parallel tracks\u2014one from left to right, the other 
from right to left. The camera stays still between the tracks, showing the trains 
moving past each other in opposite directions.

T02: Relative motion in same direction
Prompt: Two cars drive side by side in the same direction at slightly different 
speeds. The camera follows the slower car as the other car slowly pulls ahead.

Example 2:

General Format:
{
  "concept": "<Concept Name>",
  "Id": <Unique Integer ID>,
  "teaching_points": {
    "T01": {
      "teaching_point": "<Brief description of the teaching point>",
      "prompt": "<Detailed text prompt describing a visual scenario that illustrates the 
teaching point>"
    },
    "T02": {
      "teaching_point": "<Teaching point 2>",
      "prompt": "<Prompt for teaching point 2>"
    },
    ...
    "TNN": {
      "teaching_point": "<Nth teaching point>",
      "prompt": "<Prompt for teaching point N>"
    }
  }
}

  "concept": "<Concept Name>",
  "Id": <Unique Integer ID>,
  "teaching_points": {
    "T01": {
      "teaching_point": "<Brief description of the 
teaching point>",
      "prompt": "<Detailed text prompt describing a 
visual scenario that illustrates the teaching point>"
    },
    "T02": {
      "teaching_point": "<Teaching point 2>",
      "prompt": "<Prompt for teaching point 2>"
    },
    ...
    "TNN": {
      "teaching_point": "<Nth teaching point>",
      "prompt": "<Prompt for teaching point N>"
    }
  }
}

Construction Pipeline

Initial concepts extracted 
using the Gemma-3 
language model.

Manual filtering to ensure 
conceptual relevance and 
visualizability.

Teaching points generated 
with Gemma-3 and verified 
for clarity and instructional 
relevance.

Prompts generated with 
Gemma-3 and verified for 
suitability in video 
generation.

General Format:

Concept: Newton’s First Law of Motion

T01: An object at rest will remain at rest unless a force causes it to move.
Prompt: A toy car sits still on a smooth, wooden floor. A hand gently pushes it, and 
it rolls forward a short distance. The background is a brightly lit playroom.

T04: When a force is applied, an object accelerates in the direction of that 
force.
Prompt: A person pushes a shopping cart; the cart begins to move down a smooth 
aisle. The background shows a supermarket aisle.

T03: The more mass an object has, the harder it is to change its motion.
Prompt: A small, lightweight ball rolls easily when pushed, while on pushing a large, 
heavy bowling ball it starts moving later

T02: An object in motion will continue moving at the same speed and in the 
same direction unless a force changes it.
Prompt: A rolling ball continues to travel in a straight line across a grassy field. 
The background is a sunny field with a distant fence.

Example 1:

Figure 1. Overview of the PhyEduVideo Benchmark. 1 The construction pipeline, from concept extraction to prompt generation. 2
Concept distribution across five major physics domains: Mechanics, Electromagnetism (EM), Optics, Thermodynamics (Thermo), Fluids,
and Waves & Oscillations ( W&O). 3 Standardized representation of each concept, detailing key teaching points and corresponding video
prompts. 4 Example concepts with teaching points, visual prompts, and representative generated video frames. As shown, current T2V
models often fail to produce videos that are both semantically aligned and physically plausible—for example, in T04 (Relative Motion),
the two toy cars were intended to move side by side at the same speed, but the generated video deviates from this.

eral video quality or physical plausibility, our benchmark
prioritizes educational utility by grounding evaluation in
well-defined physics concepts and their associated teaching
points. Each concept is systematically decomposed into a
set of teaching points that mirror how the concept would be
introduced in instructional practice, ensuring both compre-
hensive coverage and pedagogical coherence. This struc-
tured design allows us to evaluate whether generated videos
meaningfully support conceptual understanding rather than
merely displaying visual plausibility. Figure 1 provides
an overview of our benchmark. The PhyEduVideo bench-
mark consists of 205 prompts spanning 60 physics con-
cepts, each decomposed into 1–5 teaching points that di-
rectly align with instructional goals. Breaking concepts
down into teaching points ensures comprehensive coverage.
The prompt associated with each teaching point has an av-
erage length of 16–45 words. Among the models we ana-
lyzed, Wan2.1 achieves the strongest overall performance,
followed by PhyT2V. Domains such as Mechanics, Fluids,
and Optics show relatively higher accuracy, whereas Elec-
tromagnetism and Thermodynamics remain more challeng-
ing, highlighting areas for future improvement. Our contri-
butions are threefold:

• We introduce PhyEduVideo, the first physics education
benchmark designed to evaluate T2V generative models.

• We provide a structured framework that grounds evalu-
ation in pedagogical units of analysis (teaching points),
enabling fine-grained assessment of educational utility.

• We present empirical insights into the strengths and limi-
tations of current T2V models in generating instructional
videos, showing that while they produce visually coherent
outputs, they often struggle with physics commonsense
and semantic alignment.

2. Related Work

2.1. Text-to-Video Models

Text-to-video (T2V) generation has advanced rapidly,
evolving from early GAN-based systems to diffusion and
transformer architectures. Initial approaches such as
MoCoGAN [27] and TGAN [7] introduced spatiotempo-
ral discriminators but suffered from poor scalability, mo-
tion consistency, and text alignment. Diffusion models
soon became dominant, with UNet-based architectures pro-
gressively denoising latent representations into coherent
frames. Representative examples include ModelScope [29],
VideoCrafter [5, 6], CogVideo [12], AnimateDiff [9], and
Text2Video-Zero [15]. Large-scale efforts such as Ima-
gen Video [11] and Make-A-Video [23] demonstrated high-
resolution synthesis and spurred widespread adoption.

However, convolutional UNets struggle with long-range
temporal dependencies, motivating the shift to Diffusion
Transformers (DiTs), which use self-attention to model
global spatial-temporal relationships. Models such as
Sora [20], CogVideoX [37], Hunyuan [25], Wan2.1 [28],
Pika [31], Lumiere [3], and Kling [30] exemplify this trend,
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Figure 2. Overview of benchmark statistics for the PhyEduVideo dataset. (a) Distribution of teaching points across physics concepts,
(b) Word cloud of frequent prompt terms, (c) Distribution of prompt lengths.

setting a new paradigm for T2V. This progression from
GANs to UNet diffusion, and now to transformer-driven ar-
chitectures, reflects a broader shift in generative modeling
toward scalability, semantic fidelity, and controllability.

Complementary research explores multimodal pretrain-
ing for scalable video understanding, retrieval-augmented
generation for stronger text–video alignment, and physics-
aware conditioning for controllable dynamics. Notably,
PhyT2V [35] combines LLM guidance with simulation pri-
ors, achieving 2.3× stronger physical compliance and 35%
average gains on PhyGenBench [21]. These developments
signal the maturation of T2V into a discipline uniting vi-
sion, language, and physical reasoning. Physics-aware
models, in particular, show promise for education by offer-
ing intuitive, visual explanations of abstract concepts. By
explicitly simulating physical interactions and constraints,
they open new opportunities for delivering pedagogically
grounded resources at scale. In this study, we systematically
evaluate their strengths and limitations for instructional use.

2.2. Evaluation Benchmarks for Text-to-Video
Models

While T2V models have made rapid progress in fidelity,
stability, and semantic alignment, their evaluation has re-
lied mostly on general-purpose metrics. VBench [13] in-
troduced a hierarchical framework with dimensions such
as prompt adherence, spatial coherence, and temporal con-
sistency, later expanded in VBench++ [14] and VBench
2.0 [39] to include commonsense reasoning, physics real-
ism, and aesthetics. Other benchmarks focus on compo-
sitional generalization (T2VCompBench), motion dynam-
ics (DEVIL [19]), or controllability. Together, these efforts
have established a solid foundation for large-scale and sys-
tematic T2V evaluation.

Physics-specific benchmarks test adherence to physical
principles. VideoPhy [1] introduced Semantic Adherence
(SA) and Physical Commonsense (PC) metrics, extended
in VideoPhy2 [2] with a Physical Rules (PR) dimension.
Physics-IQ [22] emphasized intuitive physical reasoning
with real-world videos, while PhyGenBench [21] broad-

ened coverage across mechanics, thermodynamics, and op-
tics using simulation probes and LLM-based evaluators.
These benchmarks represent an important step toward mea-
suring physical realism, yet they are not explicitly designed
for teaching contexts.

Despite these advances, existing benchmarks emphasize
plausibility over pedagogy: they test if videos look realistic
but not whether they teach. To address this gap, we propose
the first benchmark tailored to physics education. Each con-
cept is decomposed into fine-grained teaching points, en-
abling systematic evaluation of whether generated videos
convey core ideas clearly and coherently. This refram-
ing shifts evaluation from surface-level realism to instruc-
tional utility, offering a complementary perspective to prior
benchmarks and advancing T2V research toward impactful
educational applications.

3. PhyEduVideo
The PhyEduVideo benchmark is developed to systemati-
cally evaluate the capabilities of Text-to-Video (T2V) mod-
els in accurately visualizing foundational physics concepts
for educational purposes. It encompasses a total of 60
core concepts drawn from seven major domains of clas-
sical physics: Mechanics (38.33%), Waves & Oscillations
(6.67%), Thermodynamics (16.67%), Electricity and Mag-
netism (Electromagnetism) (20.00%), Fluids (10%), and
Optics (8.33%) Figure 1 2 . Mechanics is the most repre-
sented domain, reflecting its foundational role in introduc-
tory physics education. A standardized format is provided
in Figure 1 3 .

To construct the benchmark, we followed a structured
multi-stage pipeline, visualized in Figure 1 1 :
1. Concept Identification: We began by using the

Gemma-3 language model [26] to extract an initial set of
classical physics concepts from standard K-12 and un-
dergraduate physics curricula. This automated step en-
sured coverage across a wide conceptual space.

2. Manual Filtering: The extracted list was then manually
reviewed by physics experts to retain only those concepts
that are both pedagogically essential and visually realiz-
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able. Abstract, redundant, or highly mathematical top-
ics—such as Lagrangian mechanics, tensor calculus, or
complex integrals—were excluded in favor of those that
lend themselves to intuitive, observable phenomena like
Newton’s laws, simple harmonic motion, or conserva-
tion of energy.

3. Decomposition into Teaching Points: Each validated
concept was further broken down into multiple teach-
ing points—fine-grained, pedagogically distinct sub-
concepts that capture specific physical behaviors or rela-
tionships. As shown in Figure 1 4 for example, the con-
cept of “Newton’s First Law” is divided into four teach-
ing points: objects at rest, constant motion, inertia, and
force-induced acceleration. This decomposition allows
T2V models to be tested on precise subcomponents of
conceptual understanding, rather than broad themes.

4. Prompt Generation and Refinement: For each teach-
ing point, candidate prompts were first generated auto-
matically using Gemma-3 and then refined by humans.
These prompts provide short, clear descriptions for gen-
erating videos. Examples of the final prompts and their
corresponding videos are shown in Figure 1 4 .

Benchmark Statistics: The final PhyEduVideo bench-
mark comprises 205 prompts derived from the 60 physics
concepts, each decomposed into between one and five
teaching points (Figure 2(a)). Each prompt is written as
a self-contained, visually descriptive scenario that maps
directly to a teaching goal. The average prompt length
falls in the 16–45 word range, with longer prompts of-
fering additional context for more complex situations, as
seen in Figure 2(c). Figure 2(b) shows the prompt vo-
cabulary, which spans a wide range of physical entities
(e.g., “ball,” “coil,” “current”) and actions (e.g., “move,”
“push,” “show”), reflecting both linguistic diversity and
conceptual coverage. Collectively, these characteristics en-
able PhyEduVideo to serve as a rigorous and pedagogi-
cally grounded testbed for evaluating the scientific accu-
racy, temporal coherence, and visual fidelity of physics-
focused T2V models. In comparison, PhyGenBench offers
160 prompts across 27 physical laws, T2VPhysBench pro-
vides 84 prompts spanning twelve laws, and VideoPhy fo-
cuses on interaction-driven scenarios—highlighting PhyE-
duVideo’s broader, education-oriented design grounded in
structured teaching points.

3.1. Metrics
To evaluate T2V models for physics education using the
PhyEduVideo benchmark, we propose a structured frame-
work assessing video generation quality, prompt adherence,
and physics-specific fidelity. The evaluation is conducted
across four dimensions: Semantic Alignment (SA), Physical
Commonsense (PC), Motion Smoothness (MS), and Tempo-
ral Flickering (TF).

• Semantic Alignment (SA): [1, 2, 21] This metric mea-
sures how well a generated video matches the main idea
of the input prompt. It checks if the core scenario, key ac-
tions, and important visual elements described in the text
appear correctly and coherently in the video. For exam-
ple, for the prompt “A rolling ball continues in a straight
line,” a semantically aligned video should show the ball
moving steadily along a straight path. Semantic Align-
ment is scored from 0 to 3 using InternVL3.5 [33], which
evaluates two components: object score (0 = none, 1 =
some, 2 = all key objects present) and action score (0 =
main action not depicted, 1 = main action depicted). A
higher score means the video correctly represents both the
described objects and actions.

• Physics Commonsense (PC): [1, 2, 21] This metric eval-
uates whether the generated video correctly follows the
intended teaching point. For example, when ice is placed
in water, it should melt gradually, 0◦C until the ice is fully
melted, and the water level should rise steadily as the ice
turns into liquid. Following PhyGenBench [1], this met-
ric is structured into three finer-grained evaluation stages:
1. Key Physical Phenomena Detection: This sub-metric

evaluates whether the video successfully captures the
essential physical behavior described in the prompt.
For example, if the prompt involves projectile motion,
the video should display a curved parabolic trajectory,
rather than an unrealistic linear path.

2. Physics Order Verification: This stage assesses the
temporal coherence of physical events within the
video. It verifies whether the sequence of actions fol-
lows a logically and physically correct order. For in-
stance, in a pendulum motion, the object must first
be released before it begins to swing. To perform
this evaluation automatically, we employ LLaVA-
Interleave [17].

3. Overall Naturalness Evaluation: This component as-
sesses the naturalness of a video by examining whether
objects and their movements appear physically plau-
sible. To guide this evaluation, we define four GPT-
generated descriptions for a given prompt, represent-
ing different levels of naturalness: Fantastical descrip-
tions involve highly imaginative or impossible sce-
narios. Clearly unrealistic descriptions depict ob-
jects behaving in ways that blatantly violate funda-
mental physical principles, for example, a ball sink-
ing through a solid table or two objects occupying
the same space simultaneously. Slightly unrealistic
descriptions generally follow physical principles but
include minor inconsistencies or exaggerated effects,
such as overly bouncy objects or frictionless slides.
Realistic descriptions describe objects moving and in-
teracting fully in accordance with real-world physics.
InternVideo2 [34] is then employed to compare the
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Metric EM Mech Fluids Thermal Optics W&O Avg

ρ ↑ τ ↑ ρ ↑ τ ↑ ρ ↑ τ ↑ ρ ↑ τ ↑ ρ ↑ τ ↑ ρ ↑ τ ↑ ρ ↑ τ ↑

VideoPhy-SA 0.24 0.19 0.31 0.24 0.49 0.40 0.28 0.21 0.45 0.36 0.47 0.37 0.44 0.34
VideoPhy-PC -0.01 -0.01 0.11 0.09 -0.11 -0.09 -0.05 -0.04 0.17 0.14 0.07 0.06 0.01 0.01
PhyEduVideo-SA 0.46 0.41 0.48 0.45 0.59 0.51 0.66 0.60 0.45 0.41 0.42 0.39 0.51 0.46
PhyEduVideo-PC 0.30 0.27 0.56 0.52 0.35 0.33 0.59 0.55 0.30 0.27 0.57 0.54 0.39 0.36

Table 1. Domain-wise correlations between human and model scores using Spearman’s ρ and Kendall’s τ . Models (VideoPhy, PhyEdu-
Video) are split into SA = Semantic Alignment and PC = Physics Commonsense. Domains are abbreviated as follows: EM: Electromag-
netism, Mech: Mechanics, Thermal: Thermodynamics, W&O: Waves and Oscillations, and Avg: Average across all domains.

Teaching point:   The efficiency of a heat engine is the ratio of work output to heat 
input. 
Prompt:   Two identical steam locomotives, one moving faster than the other, while 
both emit the same amount of steam.

Human

PC:
1SA:
1

VideoPhy

0.62(+0.38)

0.18(+0.82)

PhyEduVideo

1

1

Teaching point:   If the net force on an object is zero, it stays at rest or keeps moving 
at constant speed.
Prompt:   A seesaw balances perfectly with a child on one side and a toy on the other. 
The background shows a park with families playing.

Human

PC:

0.67SA:
0.67

VideoPhy

0.531(+0.14)

0.009(+0.661)

PhyEduVideo

0.67

0.67

Teaching point:   Positive net work increases an object's kinetic energy, making it move 
faster.
Prompt:   A rocket lifts off and gains speed as flames burst from its engines. The sky 
transitions from blue to space-black in the background.

Human

PC:
1SA:

0.67

VideoPhy

0.85(+0.15)

 0.20(+0.80)

PhyEduVideo

1

0.67

Teaching point:   An object floats if the buoyant force is equal to or greater than its 
weight, and sinks if the weight is greater than the buoyant force.
Prompt:   Show two transparent cubes of the same size. One is filled with feathers, 
and it floats on water. The other is filled with metal and sinks completely.

Human

PC:
0.34SA:
0.34

VideoPhy

0.85(-0.51)
 0.2(+0.14)

PhyEduVideo

0.34

0.34

Teaching point:   Density is the amount of mass in a given volume. More mass in the 
same space means higher density.
Prompt:   Show two transparent glass cubes of the same size. One is filled with 
feathers, and the other with metal pieces. Two people try to lift them at the same 
time. The person lifting the feather box lifts it easily. The other person struggles to 
lift the metal box, showing it is much heavier and denser.

Human

PC:
1SA:
1

VideoPhy

0.62(+0.38)

 0.18(+0.82)

PhyEduVideo

1

1

Teaching point:   Calorimetry is the measurement of heat transfer between substances 
using temperature change.
Prompt:   Drop a glowing red-hot metal ball into a transparent beaker filled with cool 
water. As the ball enters, steam rises and bubbles form. Over time, the ball gradually 
loses its red glow, becoming silver again, while the water begins to steam lightly.

Human

PC:
0.67SA:
0.34

VideoPhy

 0.009(+0.661)

 0.44(+0.56)

PhyEduVideo

0.34

0.34 (0.33)

Figure 3. Comparison of SA (Semantic Adherence) and PC (Physics Commonsense) scores assigned by the VideoPhy, Automatic Evaluator
(PhyEduVideo) and humans. Detailed videos are available on the GitHub page.

generated video against these categories, assigning the
most appropriate category to the video.

• Motion Smoothness: [13] This refers to the continuity
and coherence of object motion and background in the
video. Videos should not exhibit jerky, inconsistent, or

mechanically impossible motion patterns. The motion in
the video should be smooth and follow the physics con-
cept.

• Temporal Flickering: [13] This evaluates the stability of
visual properties (like object color, size, or shape) across
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frames. Abrupt flickers, changes in object identity, or dis-
appearing elements can break temporal coherence and de-
grade the viewing experience. A consistently rendered
object across the video receives a high flickering score.
Overall, these four criteria provide a structured and

holistic framework for evaluating generated videos in the
context of physics education. By addressing both concep-
tual and visual aspects, the benchmark supports rigorous
and pedagogically meaningful assessment of model out-
puts. This enables more targeted progress in developing
text-to-video models that are both scientifically accurate
and educationally effective.

3.2. Human Evaluation
To assess the alignment of automatic metrics with human
perception, we conducted a human evaluation study on
500 videos, involving annotators who had formally studied
physics up to the 12th grade. The results, summarized in
Tables 1, show that PhyEduVideo achieves much stronger
correlations with human judgments than VideoPhy [1].
VideoPhy is a benchmark that tests whether text-to-video
models follow basic physical commonsense, such as correct
object interactions, material behaviors, and physical laws
along with semantic adherence. For both SA and PC, the
highest correlations are observed in the Thermodynamics
category, while the lowest are found in Electromagnetism
and Optics. Overall, PhyEduVideo achieves a Spearman
correlation of 0.509 and a Kendall correlation of 0.462 for
SA—considerably higher than the corresponding values for
VideoPhy (gap = 0.071 and 0.122). For PC, PhyEduVideo
reaches 0.392 (Spearman) and 0.363 (Kendall), again sig-
nificantly outperforming VideoPhy (0.008 and 0.006), with
absolute gains of 0.384 and 0.357, respectively. This con-
sistent gap underscores the value of our benchmark in better
capturing human judgment. Importantly, these higher corre-
lation numbers also indicate that PhyEduVideo more faith-
fully aligns with pedagogically accurate teaching points,
ensuring that evaluation outcomes reflect not just visual
plausibility but instructional relevance. Figure 3 presents
qualitative examples where human scores are shown along-
side predictions from VideoPhy and PhyEduVideo, further
demonstrating how our benchmark provides more faithful
and interpretable assessments.

4. Experiments
4.1. Evaluated Models
We evaluate five state-of-the-art text-to-video (T2V) gen-
eration models on our benchmark: CogVideoX [37],
Wan2.1 [28], VideoCrafter2 [6], Video-MSG [18], and
PhyT2V [21]. CogVideoX-5B, with demonstrated suc-
cess on physics-focused evaluations, serves as a baseline
for physics-grounded video generation due to its consistent

Model SA ↑ PC ↑ MS ↑ TF ↑

M
ec

ha
ni

cs

VideoCrafter2 0.75 0.52 0.94 0.92
CogVideoX 0.85 0.57 0.98 0.97

Wan2.1 0.86 0.66 0.99 0.98
Video-MSG 0.75 0.53 0.99 0.99

PhyT2V 0.80 0.59 0.98 0.97

W
&

O

VideoCrafter2 0.72 0.49 0.92 0.90
CogVideoX 0.79 0.59 0.98 0.98

Wan2.1 0.87 0.59 0.99 0.98
Video-MSG 0.69 0.46 0.99 0.99

PhyT2V 0.72 0.59 0.98 0.97

F
lu

id
s

VideoCrafter2 0.58 0.48 0.89 0.87
CogVideoX 0.71 0.58 0.98 0.97

Wan2.1 0.90 0.63 0.99 0.98
Video-MSG 0.67 0.58 0.99 0.99

PhyT2V 0.85 0.63 0.98 0.97

Th
er

m
al

VideoCrafter2 0.51 0.38 0.89 0.86
CogVideoX 0.75 0.52 0.98 0.98

Wan2.1 0.93 0.52 0.99 0.98
Video-MSG 0.71 0.39 0.99 0.99

PhyT2V 0.75 0.49 0.98 0.97

E
M

VideoCrafter2 0.54 0.50 0.89 0.88
CogVideoX 0.73 0.65 0.98 0.98

Wan2.1 0.65 0.57 0.99 0.98
Video-MSG 0.60 0.48 0.99 0.99

PhyT2V 0.75 0.62 0.98 0.98

O
pt

ic
s

VideoCrafter2 0.64 0.62 0.88 0.83
CogVideoX 0.69 0.60 0.99 0.98

Wan2.1 0.78 0.64 0.99 0.98
Video-MSG 0.69 0.64 0.99 0.99

PhyT2V 0.80 0.71 0.99 0.98

Av
er

ag
e

VideoCrafter2 0.62 0.50 0.90 0.88
CogVideoX 0.75 0.59 0.98 0.98

Wan2.1 0.83 0.60 0.99 0.98
Video-MSG 0.68 0.52 0.99 0.99

PhyT2V 0.78 0.60 0.98 0.97

Table 2. Comparison of five video generation models across six
physics domains, along with their overall averages. Metrics in-
clude Semantic Adherence (SA), Physics Commonsense (PC),
Motion Smoothness (MS), and Temporal Flickering (TF). Best
scores are highlighted in cyan, and second-best in light cyan. Do-
mains are abbreviated as follows: EM: Electromagnetism, Ther-
mal: Thermodynamics and W&O: Waves and Oscillations

high scores in physics-following benchmarks. Wan2.1 is
a strong, general-purpose T2V model that achieves high
scores across a wide range of benchmarks, providing in-
sight into the generalization capabilities of current systems.
VideoCrafter2 is known for generating high-resolution, vi-
sually coherent videos, making it useful for assessing vi-
sual quality and detail. In addition, we include models
with more specialized architectures. Video-MSG employs
a training-free, structured guidance pipeline that closely
follows input prompts. Its generation proceeds in three
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stages: (1) Background Planning, where a multimodal large
language model (MLLM, specifically GPT-4o) produces
detailed background descriptions, rendered via a text-to-
image (T2I) model and animated with an image-to-video
(I2V) model; (2) Foreground Object Layout and Trajectory
Planning, where object positions and motions are inferred
with MLLM guidance; and (3) Video Generation, where the
planned layout is denoised to produce the final video. This
compositional approach has shown strong performance on
T2V-CompBench [24] and is evaluated here for its abil-
ity to produce visually coherent, pedagogically meaning-
ful physics content. PhyT2V [35], in contrast, is specifi-
cally engineered for physics-aware generation: it integrates
large language models with physics simulation priors to it-
eratively refine video content, ensuring adherence to phys-
ical laws while maintaining semantic and temporal coher-
ence. Its performance on PhyGenBench [21] demonstrates
notable gains in physical plausibility and instructional clar-
ity, making it uniquely suited for evaluating T2V models in
educational contexts. Comprehensive implementation de-
tails, including model configurations and evaluation proto-
cols, are provided in the appendix.

4.2. Quantitative Evaluation

Quantitative evaluations, summarized in Tables 2, high-
light clear trends in both perceptual quality and correctness-
based performance of text-to-video (T2V) models. All eval-
uated models achieve consistently high scores in Motion
Smoothness (MS) and Temporal Flickering (TF), with val-
ues typically above 0.85, demonstrating that current sys-
tems are capable of generating visually coherent and tem-
porally stable videos. However, this strength contrasts
sharply with the lower scores observed in correctness-
oriented metrics such as Semantic Adherence (SA) and
Physics Commonsense (PC), which are critical for ensur-
ing educational and conceptually accurate content. Among
the models, Wan2.1 [28] stands out as the overall best per-
former, achieving the highest SA and PC scores across most
domains, followed closely by PhyT2V [35], which main-
tains competitive reasoning ability while delivering visu-
ally stable results. In comparison, VideoCrafter2 [6] ranks
lowest in both SA and PC despite its strong performance
on temporal flickering and motion smoothness. Video-
MSG [18] similarly excels in video quality metrics but does
not achieve a significant boost in physics commonsense,
suggesting that compositional control alone is insufficient
for capturing complex physics concepts.

A category-level analysis reveals notable differences
across physics domains. Mechanics emerges as a relatively
solvable domain, with models achieving SA scores above
0.75 and PC scores exceeding 0.50, reflecting that visu-
ally grounded concepts like motion and collisions are eas-
ier to represent. Fluids and Optics stand out as the best-

performing domains overall (across all 4 metrics), reaching
the highest SA (up to 0.90) and PC (up to 0.71), indicat-
ing that distinctive visual dynamics such as flow patterns
or light interactions are more learnable by current models.
By contrast, Thermodynamics and Electromagnetism show
the weakest correctness performance: in Thermodynamics,
VideoCrafter2 drops to an SA of 0.51 and a PC of 0.38,
while in Electromagnetism, most models record PC values
below 0.50. Waves & Oscillations show moderate perfor-
mance, better than Thermodynamics and Electromagnetism
but trailing behind Fluids and Optics. These results reveal
a consistent reasoning–perception gap: while models reli-
ably generate smooth and visually appealing content, their
semantic adherence and physics commonsense remain lim-
ited. Wan2.1 and PhyT2V perform comparatively better,
showing greater stability, coherence, and conceptual align-
ment, making them more suitable for physics-focused ed-
ucational content. A key challenge arises in domains such
as Electromagnetism, where core concepts involve charges,
magnetic fields, and electric fields—phenomena that are not
directly visible. For teaching, however, it is crucial to make
such invisible entities perceivable in order to build under-
standing. This is precisely where our benchmark stands out
from existing physics-based benchmarks: rather than only
checking whether generated videos obey physical laws, we
emphasize the educational dimension, requiring models to
represent abstract and invisible concepts in a way that aids
learning.

4.3. Qualitative Evaluation

Figure 4 qualitatively compares generations across six key
physics education domains—Mechanics, Waves & Oscil-
lations, Fluids, Thermodynamics, Electromagnetism, and
Optics—revealing strengths and limitations in how current
models visually communicate scientific concepts. Corre-
sponding to each domain, an example teaching point, tex-
tual prompt to query the T2V and images from start, middle
and end part of the generated output video are shown in
the Figure 4. Detailed videos are available on the GitHub
pag. Wan 2.1 [28] shows strong educational potential, gen-
erating coherent and semantically grounded sequences that
align well with physical principles, such as realistic pro-
jectile motion in Mechanics and light refraction in Optics.
CogVideoX [37] performs well in Mechanics and Fluids,
where object interactions are simpler and more grounded
in visual cues, though often hindered by structural incon-
sistencies. VideoCrafter2 [6] consistently delivers visually
smooth outputs but lacks the semantic fidelity needed for in-
structional clarity, especially in abstract domains like Elec-
tromagnetism and Waves. Video-MSG [18] maintains tem-
poral stability and shows potential in controlled categories
like Mechanics and Thermodynamics, yet struggles with
conveying deeper causal relationships and dynamic vari-
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Figure 4. Qualitative comparisons of generated videos across six classical physics categories—Mechanics, Waves & Oscillations, Fluids,
Thermodynamics, Electromagnetism, and Optics—for five T2V models: VideoCrafter2, CogVideoX, Wan2.1, Video-MSG, and PhyT2V.
Detailed videos are available on the GitHub page.

ations essential for physics learning. PhyT2V [35], de-
signed with physics-awareness in mind, achieves a strong
balance between visual stability and conceptual fidelity, ex-
celling particularly in scenarios that require accurate phys-
ical reasoning, such as current-induced effects in Electro-
magnetism. These observations underscore the gap between
visual quality and conceptual fidelity in current models, em-
phasizing the need for physics-aware architectures to sup-
port meaningful and accurate science education content.

5. Conclusion
This work introduces a benchmark for evaluating text-
to-video (T2V) generation in physics education. Unlike
prior efforts that mainly test adherence to physical laws,

our benchmark emphasizes educational relevance. Each
physics concept is broken into granular teaching points,
with prompts targeting their visual explanation. This en-
ables evaluation of whether models generate videos that not
only look realistic but also support teaching by making ab-
stract or invisible entities—such as charges, fields, or wave
interactions—visually understandable. Using this bench-
mark, we evaluate CogVideoX, Wan2.1, VideoCrafter2,
Video-MSG, and PhyT2V. While models produce coher-
ent motion with reasonable smoothness, they often strug-
gle with semantic adherence and physics commonsense.
Wan2.1 and PhyT2V perform comparatively better but still
have room for improvement, highlighting the need for
physics-aware, education-focused T2V systems.
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Appendix

A. Model Details
We evaluate six state-of-the-art video generation models
with distinct design philosophies. VideoCrafter2 is an
open-source diffusion-based framework known for control-
lability and high-quality short clips. CogVideoX [37], a
transformer-based model, emphasizes long-duration gener-
ation with improved temporal coherence. Wan2.1 advances
photorealism and motion stability through refined denois-
ing strategies. Video-MSG employs a controlled genera-
tion strategy getting high scores for T2VCompench [24]
prompts. PhyT2V [35] is a model designed for physics
video generation via CoT method. Table 3 represents the
model details for each model.

B. Human Evaluation
A total of 500 videos were selected for human evaluation,
covering outputs from VideoCrafter2 [6], CogVideoX [37],
Wan2.1 [28], Video-MSG [18], and PhyT2V [35]. As
shown in Figure 6, each video was evaluated by human
judges who answered two specific questions designed to as-
sess the video’s content. The annotators followed a stan-
dardized set of instructions, shown in Figure 5, which en-
sured consistency and fairness across all assessments. The
evaluation focused on how well the video adhered to the
given prompt and whether it accurately conveyed the in-
tended teaching point. These human judgments provide
a benchmark for comparing automatic evaluation metrics
against human perception.

C. Analysis of Score Mismatches Between
PhyEduVideo and Human Evaluators

We analyzed cases where PhyEduVideo’s scores for Seman-
tic Adherence (SA) and Physics Commonsense (PC) did
not align with human judgments, focusing on understand-
ing the causes of mismatches (Figure 7) . Overall, the model
performs well in straightforward scenarios, such as apply-
ing force to a shopping cart, where both human and model
scores perfectly match. However, in more complex cases,
PhyEduVideo tends to overestimate correctness, reflecting

Model Duration (s) FPS Resolution

VideoCrafter2 [6] 5 8 512 x 320
CogVideoX-5b [37] 6 15 640 x 320

Wan2.1 [28] 6 15 832 x 480
Video-MSG [18] 6 28 720 x 480

PhyT2V [35] 6 8 720 x 480

Table 3. Details of duration, FPS, and resolution for each model
are presented in the table.

a limitation in capturing nuanced physics reasoning or se-
mantic context. For example, in the rotating coil scenario,
humans assigned low scores (SA = 0.34, PC = 0.34) due to
partial recognition of the relation between current and rota-
tion, while PhyEduVideo overestimated both (SA = 1.0, PC
= 0.67). Similarly, in planetary orbit and charged particle
in a magnetic field cases, the model assigned higher scores
than humans, likely because it detected general motion or
field presence but failed to capture detailed physics princi-
ples, such as orbital speed variation or circular trajectories.
In meter bridge wire adjustment and projectile motion on
a hill, PhyEduVideo again overestimated both SA and PC,
misinterpreting visual cues as correct semantic and physics
adherence, whereas humans recognized subtle discrepan-
cies in the purpose or motion. In summary, PhyEduVideo
generally aligns well with human judgments for clear and
straightforward scenarios. In more complex situations re-
quiring fine-grained reasoning, it sometimes assigns higher
semantic and physics scores than humans, likely due to sub-
tle physics nuances, partial contextual cues, or reliance on
visual detection of motion and objects.
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Figure 5. Guidelines and rules given to human annotators to ensure consistent and reliable evaluation.

Figure 6. Questions provided for human evaluation and their respective scoring schemes are illustrated in the diagram above.

12



Teaching point:   When a force is applied, an object accelerates in the direction of that 
force.
Prompt:   A person pushes a shopping cart; the cart begins to move down a smooth aisle. 
The background shows a supermarket aisle.

Human

PC:
0.67SA:
0.67

PhyEduVideo

1(-0.33)

1(-0.33)

Teaching point:   The amount of rotation is proportional to the current passing through 
the coil.
Prompt:   A variable resistor changes the amount of current flowing through the coil.  
The coil rotates more rapidly as the current increases, and slower as the current 
decreases.

Human

PC:

0.34SA:
0.34

PhyEduVideo

1(-0.66)

0.67(-0.33)

Teaching point:   A planet moves faster when it is closer to the Sun and slower when it 
is farther away.
Prompt:   Top view of a planet orbiting the Sun. The Sun is at one side, not in the 
center. Show the planet moving quickly near the Sun and slowly when far away.

Human

PC:
0.34SA:
0.34

PhyEduVideo

0.34

0.67(-0.33)

Teaching point:   The magnetic force is a component of the force that is always 
perpendicular to both the velocity and the magnetic field.
Prompt:   A charged particle is shot into a magnetic field, resulting in a circular path.  
The background shows a large, open space with a brightly lit magnetic field setup.

Human

PC:
0.34SA:

0

PhyEduVideo

0.67(-0.67)

1(-0.66)

Teaching point:   An object launched upwards follows a curved path due to gravity.
Prompt:   A ball is thrown from a hilltop and follows a smooth, curved path before 
landing. The background shows a grassy hill with a clear sky.

Teaching point:   The length of the wire in a meter bridge can be adjusted to create a 
more precise comparison of resistances.
Prompt:   A person adjusts the length of the wire connecting the two arms of a meter 
bridge. The galvanometer needle deflects less as the wire length changes, indicating a 
more sensitive measurement.

Human

PC:
0SA:
0

PhyEduVideo

0.67(-0.67)

0.67(-0.67)

Human

PC:
0.34SA:
0.34

PhyEduVideo

0.67(-0.33)

1(-0.66)

Figure 7. Comparison of SA (Semantic Adherence) and PC (Physics Commonsense) scores assigned by the Automatic Evaluator (PhyE-
duVideo) and humans.
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Teaching point:   If no external forces act on a system, the total linear momentum of the 
system remains the same before and after a collision.
Prompt:  Two identical ice skaters glide toward each other on a frictionless ice rink. They 
collide gently and move together slowly after the collision. The background is a quiet, empty ice 
rink with no distractions.

SEMANTIC ADHERENCE OVERALL NATURALNESS EVALUATION

ORDER VERIFICATION

“The main interactions and objects involved in  it.”

OBJECTS: skater, ice rink
ACTION: A smaller skater collides with a larger 
stationary skater, and they slide together slowly 
across a frictionless ice rink.

Retr. prompt: At the moment the two skaters make 
contact

Description1: Two identical skaters are gliding 
towards each other.

Description2: both skaters slide together slowly 
after the collision.

KEY SEQ IDENTIFICATION

Q. After the collision, are both skaters moving 
together across the ice? Yes

Q. Is the two identical skaters gliding towards each 
other before the collision? Yes

1) The skaters levitate, pass through each other 
without interaction, or explode in a flash of light after 
collision — completely ignoring momentum 
conservation.

2) The skaters bounce off each other and move 
away faster than before, or one suddenly speeds up 
while the other stops instantly, defying conservation 
laws.

3) The skaters’ speeds or paths change slightly too 
early or too late relative to the moment of collision, 
or there’s slight unnatural jittering, but overall 
momentum conservation is mostly maintained.

4) The skaters approach at equal speed, collide, 
and move together at the correct slower combined 
speed immediately after — matching the 
conservation of linear momentum almost perfectly.

Wan2.1
SA: 0.67
PC: 0.67

PhyT2V
SA: 0.67
PC: 0.67

Figure 8. Domain: Mechanics. Questions used for evaluation along with outputs from Wan2.1 and PhyT2V.
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Teaching point:   Temperature describes the average kinetic energy of particles in a substance.
Prompt:  Split the screen into two parts. On one side, show cold gas particles moving slowly and 
spaced far apart. On the other side, show hot gas particles moving rapidly and bouncing around 
quickly. Include a digital thermometer above each container showing low and high temperatures.

SEMANTIC ADHERENCE OVERALL NATURALNESS EVALUATION

ORDER VERIFICATION

“The main interactions and objects involved in  it.”

OBJECTS: gas particles, thermometer
ACTION: Cold gas particles move slowly; hot gas 
particles move rapidly.

Retr. prompt: When the particles in both 
containers are visibly moving at different speeds

Description1: both containers show particles at 
rest or with minimal motion, and thermometers 
indicate similar low temperatures.

Description2: particles in the hot container move 
rapidly and collide frequently, while those in the 
cold container move slowly and less often, with 
thermometers showing a clear temperature 
difference.

KEY SEQ IDENTIFICATION

Q. Is the ice block completely melted after being in 
contact with the hot metal rod? Yes

Q. Is the metal rod no longer glowing after all the 
ice has melted? Yes

1) The animation shows gas particles on the cold 
side moving backward in time, changing shape, or 
merging and splitting at random. Thermometers 
flicker with nonsensical symbols. Particles teleport 
or transform into non-physical objects like animals 
or geometric shapes. The visual sequence is 
magical and completely ignores physical laws.

2) The cold gas particles are moving faster than 
the hot gas particles, or both sides have particles 
moving at the same speed regardless of 
thermometer reading. Particles may stop abruptly 
or pass through container walls without bouncing. 
The thermometer readings do not correlate with the 
observed particle speeds, clearly breaking the 
connection to kinetic energy.

3) The vast majority of particle motion is correct, 
but there are minor issues: perhaps a few collisions 
look awkward or a couple of particles move slightly 
faster or slower than they should for their side. The 
thermometer may have a slight delay in updating 
when the particle speeds change, but these are 
minor deviations that do not seriously undermine 
the teaching point.

4) The animation accurately shows cold gas 
particles moving slowly and spaced apart, and hot 
gas particles moving rapidly and bouncing 
energetically. Thermometers above each container 
display low and high temperatures that match the 
observed motion. All visual details closely align 
with the expected physical behavior and teaching 
point, with no noticeable errors.

Wan2.1
SA: 1
PC: 0.67

PhyT2V
SA: 1
PC: 0.67

Figure 9. Domain: Thermodynamics. Questions used for evaluation along with outputs from Wan2.1 and PhyT2V.
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Teaching point:   Temperature describes the average kinetic energy of particles in a substance.
Prompt:  Split the screen into two parts. On one side, show cold gas particles moving slowly and spaced 
far apart. On the other side, show hot gas particles moving rapidly and bouncing around quickly. 
Include a digital thermometer above each container showing low and high temperatures.

SEMANTIC ADHERENCE

ORDER VERIFICATION

“The main interactions and objects involved in  it.”

OBJECTS: hair dryer, ping pong ball
ACTION: A ping pong ball floats in an upward 
stream of air and falls when the air stops.

Retr. prompt: When the hair dryer turns off and the 
ball starts falling.

Description1: the ball floats steadily above the 
hair dryer in the fast-moving air stream.

Description2: the hair dryer is off and the ball falls 
straight down due to gravity.

KEY SEQ IDENTIFICATION

Q. Is the ping pong ball floating stably above the 
upward air stream from the hair dryer? Yes

Q. Does the ping pong ball start to fall as soon as 
the air stream stops? Yes

Wan2.1
SA: 1
PC: 0.67

PhyT2V
SA: 1
PC: 0.67

OVERALL NATURALNESS EVALUATION

1) The ping pong ball levitates above the hair dryer, 
but it glows, spins in place with no air movement, 
and occasionally floats side to side or hovers even 
after the hair dryer is off. The ball might even rise 
higher when the dryer turns off or move in 
impossible ways, completely ignoring gravity and 
airflow.

2) The ball hovers, but its motion is inconsistent with 
airflow: it may drift far outside the airstream and still 
stay aloft, or it falls very slowly after the dryer is 
turned off, appearing to ignore gravity for several 
seconds. The ball might also bounce up and down 
repeatedly without any plausible reason.

3) The ball mostly stays in the air stream, levitating 
as expected, but there may be a slight lag between 
the dryer turning off and the ball beginning to fall, or 
the ball's motion is a bit jerky when it stabilizes in 
the air. The fall looks mostly natural but might be a 
bit too smooth or too abrupt.

4) The ping pong ball remains directly above the 
hair dryer, stably floating in the upward air stream; 
when the hair dryer is turned off, the ball 
immediately and naturally falls straight down under 
gravity. The timing and motion match real-world 
expectations of the Bernoulli effect and airflow.

Figure 10. Domain: Fluids. Questions used for evaluation along with outputs from Wan2.1 and PhyT2V.
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Teaching point:   When light passes from one material to another, it changes direction.
Prompt:  A ray of light travels from a block of glass into air, bending as it exits; it travels at 
an altered angle. The background is a workshop with a workbench and various tools.

SEMANTIC ADHERENCE OVERALL NATURALNESS EVALUATION

“The main interactions and objects involved in  it.”

OBJECTS: light ray, glass block
ACTION: Light ray exits glass into air and bends 
away from normal.

KEY SEQ IDENTIFICATION

Q. Does the light ray bend at the boundary 
between glass and air? Yes

Q. Is the angle of the light ray in air different from 
its angle in glass? Yes

1) The light ray passes through the glass and into 
the air without changing direction at all, or bends in 
an impossible way (e.g., it loops, zigzags, or splits 
into multiple rays of different colors 
spontaneously). Alternatively, the ray transforms 
into a physical object or displays magical effects 
like sparking or levitating tools in the workshop.

2) The light ray noticeably ignores the interface 
between glass and air: it continues in a straight 
line, or bends in the wrong direction (toward the 
normal instead of away), or moves erratically for 
much of its path. The timing or sequence is 
inconsistent with normal behavior, such as the ray 
pausing mid-air or reflecting off surfaces that 
should be transparent.

3) The ray exits the glass and bends at the 
interface, but the angle is slightly off (e.g., a small 
deviation from what Snell's Law would predict), or 
the bending animation seems abrupt or a little 
delayed. There might be a tiny visual glitch, like the 
ray edge blurring, but the overall sequence 
matches the teaching point.

4) The ray clearly changes direction as it exits the 
glass block into air, following the correct angle 
relative to the normal—bending away as expected. 
The transition is smooth and matches the physical 
principle, with no distracting artifacts or unrealistic 
motion. The background elements (workbench, 
tools) remain neutral and do not interfere with the 
physics depiction.

Wan2.1
SA: 1
PC: 0.67

PhyT2V
SA: 0.67
PC: 0.67

ORDER VERIFICATION

Retr. prompt: Ray going from glass to air - the 
point of ray enters air.

Description1: the ray of light moves through the 
glass block.

Description2: the ray of light exits the glass block 
into air, bending away from the normal; the angle 
of the ray changes, showing refraction, while the 
background and other objects remain the same.

Figure 11. Domain: Optics. Questions used for evaluation along with outputs from Wan2.1 and PhyT2V.
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Teaching point:   A capacitor stores electrical energy in an electric field created between its 
plates.
Prompt:  Two metal plates are positioned close to each other. An arrow visually indicates the 
flow of electrons from one plate to the other, creating a visible electric field between the 
plates. A faint glow emanates from the region between the plates.

SEMANTIC ADHERENCE OVERALL NATURALNESS EVALUATION

ORDER VERIFICATION

“The main interactions and objects involved in  it.”

OBJECTS: metal plate, electrons, electric field
ACTION: Electrons flow between plates, 
generating electric field glow.

Retr. prompt: Middle Frame

Description1: From the first to the middle frame, 
the plates start out neutral, and then one plate 
becomes more negatively charged while the other 
becomes more positively charged. The electric 
field between the plates begins to form, and the 
faint glow starts to appear.

Description2: From the middle frame to the last 
frame, the electric field between the plates 
becomes stronger and the faint glow intensifies, 
indicating increased energy storage. The charge 
separation on the plates is now at its maximum, 
with the field fully established.

KEY SEQ IDENTIFICATION

Q. Is there a visible electric field (such as lines or 
a glow) shown between the two plates? Yes

Q. Is there an arrow showing electrons moving 
from one plate to the other?Yes

Wan2.1
SA: 1
PC: 0.67

PhyT2V
SA: 0.34
PC: 0.34

1) The plates float in midair emitting swirling, 
multicolored lightning bolts. Electrons visibly 
teleport between plates, and the plates levitate or 
morph shape. The 'electric field' manifests as an 
animated, pulsating wave that lifts objects or 
produces magical effects. The glow between plates 
pulses to the beat of music. None of these effects 
correspond to real physical behavior.

2) Electrons are shown moving in continuous loops 
between the plates even after the power source is 
removed, or the electric field causes the plates to 
attract or move towards each other dramatically. 
The glow becomes intensely bright, illuminating the 
whole scene. Arrows reverse direction randomly, 
and the plates spark or vibrate violently. These 
effects clearly contradict basic physical 
expectations for a capacitor.

3) The electron flow and field formation are correct, 
but there is a slight delay between electron motion 
and the appearance of the electric field. The faint 
glow between the plates may fade in or out a bit 
too slowly, or the electron arrow wiggles 
awkwardly. The sequence is almost correct, with 
only minor, brief timing or motion oddities.

4) Electrons are shown moving from one plate to 
the other in a brief, clear burst, with the electric 
field appearing steadily and symmetrically between 
the plates. The faint glow grows smoothly as the 
field builds, with all elements behaving as 
expected. The sequence accurately reflects the 
physical process of energy storage in a capacitor, 
with no noticeable deviations.

Figure 12. Domain: Electromagnetism. Questions used for evaluation along with outputs from Wan2.1 and PhyT2V.
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Teaching point:   Resonance occurs when a system is driven by an external force at its natural frequency, leading to 
large amplitude oscillations.
Prompt:  Show a child sitting on a swing. Initially, the pushes are irregular, and the swing barely moves. Then, 
demonstrate the child being pushed at regular intervals matching the swing\u2019s natural back-and-forth motion. 
With each well-timed push, the swing\u2019s amplitude increases noticeably. Clearly highlight that the energy transfer 
is most efficient when the pushing frequency matches the swing\u2019s natural frequency.

SEMANTIC ADHERENCE OVERALL NATURALNESS EVALUATION

ORDER VERIFICATION

“The main interactions and objects involved in  it.”

OBJECTS: child, swing
ACTION: Regular pushes matching swing's 
frequency increase its amplitude efficiently.

Retr. prompt: Show the frame where the swing first 
begins to noticeably increase its arc due to 
well-timed pushes (after the irregular pushes).

Description1: Between the first frame (where the 
swing barely moves with irregular pushes) and the 
retrieval frame (the first frame showing well-timed 
pushes), the swing\u2019s arc starts to noticeably 
increase, and the child swings higher than before.

Description2: Between the retrieval frame (first 
noticeable increase in arc) and the last frame (after 
several well-timed pushes), the swing\u2019s arc 
grows even larger, and the child reaches a much 
greater height, clearly showing the effect of 
resonance.

KEY SEQ IDENTIFICATION

Q. Is the swing reaching a much higher amplitude 
when the pushes are given at regular intervals 
matching its natural frequency? Yes

Q. IDoes the swing remain at a low amplitude when 
the pushes are irregular? Yes

1) The swing begins to levitate, spin, or move in 
impossible ways regardless of how or when pushes 
are applied. The child might fly off at random, or the 
swing reaches infinite amplitude instantly. There are 
magical effects such as glowing energy waves, or 
the swing responds to pushes even when no one is 
pushing, completely disregarding the laws of motion.

2) The swing's motion does not correspond at all to 
the timing or strength of pushes: for example, the 
swing slows down or stops entirely when pushed at 
its natural frequency, or gains maximum height from 
random, weak, or mistimed pushes. The amplitude 
might decrease or stay constant no matter how 
well-timed the pushes are, contradicting resonance. 
The sequence shows persistent impossible 
behaviors (e.g., the swing passes through the 
support structure, or pushes act with a visible delay 
of many seconds).

3) Most of the animation matches expected 
behavior, but there are small flaws: the swing might 
respond a bit too quickly or slowly to changes in 
push timing, or the amplitude increases are slightly 
exaggerated. There could be a brief moment where 
a mistimed push has a larger effect than expected, 
or the swing’s motion looks a little awkward or jerky, 
but overall the resonance effect is clear and mostly 
accurate.

4) The swing only gains significant amplitude when 
pushed at regular intervals matching its natural 
frequency; irregular pushes have little effect as 
expected. The amplitude builds up gradually over 
several well-timed pushes, and the swing’s motion is 
smooth and physically plausible. Energy transfer is 
clearly most efficient at resonance, and all details 
(timing, amplitude growth, damping if included) 
faithfully reflect the real physics of resonance in a 
playground swing.

Wan2.1
SA: 1
PC: 0.67

PhyT2V
SA: 1
PC: 0.67

Figure 13. Domain: Waves & Oscillations. Questions used for evaluation along with outputs from Wan2.1 and PhyT2V.
19


	Introduction
	Related Work
	Text-to-Video Models
	Evaluation Benchmarks for Text-to-Video Models

	PhyEduVideo
	Metrics
	Human Evaluation

	Experiments
	Evaluated Models
	Quantitative Evaluation
	Qualitative Evaluation

	Conclusion
	Model Details
	Human Evaluation
	Analysis of Score Mismatches Between PhyEduVideo and Human Evaluators

