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Abstract

In recent years, computer vision has made remarkable progress in understanding visual scenes, in-
cluding tasks such as object detection, human pose estimation, semantic segmentation, and instance
segmentation. These advancements are largely driven by high-capacity models, such as deep neural
networks, trained in fully supervised settings with large-scale labeled data sets. However, reliance on
extensive annotations poses scalability challenges due to the significant human effort required to create
these data sets. Fine-grained annotations, such as pixel-level segmentation masks, keypoint coordinates
for pose estimation, or detailed object instance boundaries, provide the high precision needed for many
tasks but are extremely time-consuming and costly to produce. Coarse annotations, on the other hand,
such as image-level labels or approximate scribbles, are much easier and faster to create but lack the

granularity required for detailed model supervision.

To address these challenges, researchers have increasingly explored alternatives to traditional su-
pervised learning, with weakly supervised learning emerging as a promising approach. This approach
mitigates annotation costs by utilizing coarse annotations (cheaper and less detailed) during training
rather than the fine-grained annotations required at the output stage during testing. Despite its poten-
tial, weakly supervised learning faces challenges in transferring information from coarse annotations
to fine-grained predictions, often encountering ambiguity and uncertainty during this process. Existing
methods rely on various priors and heuristics to refine annotations, which are then used to train models
for specific tasks. This involves managing uncertainty in latent variables during training and ensuring

accurate predictions for both latent and output variables at test time.

This thesis introduces a unified approach to weakly supervised learning in computer vision, address-
ing tasks such as human pose estimation, object detection, and instance segmentation. Central to this
work is a framework based on the dissimilarity coefficient loss, which models uncertainty in the loca-
tion of objects and human poses using coarse annotations. The approach employs two key probability

distributions:
* Conditional Distribution: Captures output probabilities using coarse annotations (e.g., action la-
bels, image-level labels, object counts), modeled with deep generative models for efficient sam-

pling.

* Prediction Distribution: Provides test-time predictions independent of coarse annotations.



vi

The framework minimizes the difference between these distributions using the dissimilarity coeffi-
cient loss, facilitating the transfer of information from coarse annotations to accurate predictions. This
methodology is consistently applied across diverse computer vision tasks, showcasing its versatility.

The efficacy of the proposed framework is demonstrated across three progressively complex visual

scene recognition tasks:

* Human Pose Estimation: A probabilistic framework is introduced for learning human poses from
still images using data sets with costly ground-truth pose annotations and inexpensive action la-
bels. By aligning the conditional and prediction distributions through the dissimilarity coefficient
loss, the method achieves significant improvements over baselines on the MPII and JHMDB data

sets, effectively leveraging action information.

* Object Detection: The framework addresses weakly supervised object detection (WSOD) by mod-
eling uncertainty in object locations using a dissimilarity coefficient-based objective. Leveraging
discrete generative models, it efficiently samples from annotation-aware conditional distributions
and integrates coarse annotations, such as image-level labels, object counts, points, and scribbles.
Spatial cluster regularization and curriculum learning further enhance performance, achieving
state-of-the-art results on benchmarks like PASCAL VOC and MS COCO.

* Instance Segmentation: The framework models uncertainty in pseudo-label generation using se-
mantic class-aware, boundary-aware, and annotation-consistent higher-order terms. By aligning
conditional and prediction distributions, it generates accurate pseudo-labels and trains Mask R-
CNN-like architectures effectively. Experiments on the PASCAL VOC 2012 data set demonstrate
state-of-the-art performance, with improved object boundary alignment and significant gains over

baselines.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the computer vision community has seen significant progress in visual scene under-
standing, like object detection [1-3], human pose estimation [4, 5], semantic segmentation [6—8], in-
stance segmentation [9, 10], etc. This has primarily been driven due to the application of high-capacity
models, like deep neural network architectures, on these tasks in a fully-supervised setting, utilizing

massively parallel compute resources (GPUs).

Although fully supervised deep learning based methods have created a profound impact, they suffer
from scalability issues. It has been empirically shown that the performance of the deep learning based
methods improves with more data [11]. Not only do the deep learning methods require huge amounts
of labeled data, but they can also not generalize to multiple domains and tasks. This has lead to a
community-driven effort to create large-scale, well-curated, and task-specific labeled data sets, such
as ImageNet [12], PASCAL-VOC [13], MS-COCO [14], CityScapes [15], Openlmages [16], ADE-
20k [17], MPII Human Pose [18] among others.

However, creating such a data set requires significant human labor. A study on PASCAL-VOC 2012
data set [13] shows that it takes 1 second per class to collect image-level labels (20 seconds for the
whole image) [19], while it takes 79 seconds to get per object segmentation masks (239.7 seconds per
image). Obtaining point-level annotations, scribble annotations, and bounding-box annotations take 2.4
seconds, 10.9 seconds, and 10.2 seconds per instance (or 22.1 seconds, 34.9 seconds, and 33.8 seconds
per image) on PASCAL VOC data set [19] respectively.

Moreover, with the increase in the number of classes and image complexity, the annotation cost
also increases significantly. On MS-COCO, it takes 27 seconds to annotate the 80 classes to obtain
image-level labels [14]. An additional 14 seconds are required to spot the instances and provide point
annotations, and it takes an additional 80 seconds per instance (19 minutes per image) to draw a polygon
to provide instance masks [14,20]. It demands an additional 3 minutes to annotate the stuff regions [20],
taking the total annotation time for an entire image to 22 minutes. Annotating every pixel in a single

image in a more complex CityScapes data set [15] takes 1.5 hours.



Figure 1.1 Figure shows the cost of annotation for different annotation types. The cost of annotation in-
creases significantly with more complex annotations. Notice that high-cost annotations can be converted
to low-cost annotations easily, e.g. from bounding box to image level, whereas the low-cost annotation
is hard to be transformed into the higher-cost annotation.

To address these challenges, considerable research efforts have been dedicated within the deep learn-
ing community. Broadly, we can categorize these beyond supervised techniques into three categories (i)
Data-centric techniques that solve the problem by generating a large amount of data similar to the orig-
inal data set; (ii) algorithm-centric techniques that tweak the learning methods to harness limited data
efficiently through various techniques like on-demand human intervention, exploiting the inherent struc-
ture of the data, capitalizing on freely available data on the web, or solving for an easier but unrelated
surrogate task; and (iii) hybrid techniques that combine the ideas from both data and algorithm-centric
approaches.

The data-centric techniques include data augmentation, which involves tweaking the data samples
from pre-defined transformations to increase the overall size of the data set [21-23]. Algorithm-centric
techniques try to relax the need for perfectly labeled data by altering the model requirements to acquire
supervision through inexact [24] (weakly supervised learning), inaccurate [25] (learning with noisy su-
pervision), and incomplete labels [26] (semi-supervised learning). These labels are cheaper and easier to
obtain for most tasks than task-pertinent annotations. Techniques involving on-demand human supervi-
sion have also been used to label selective instances from the data set [27] (active learning). Another set
of methods exploits the knowledge gained while learning from a related domain task and transferring it
to the test environment [28,29] (domain adaptation, k-shot learning). Yet another approach to avoiding
task-pertinent annotations is to define an auxiliary task that provides the supervisory signal without us-
ing explicit labels [30] (self-supervised learning). Hybrid techniques improve the model’s performance
at both data and algorithm levels. Most of the beyond-supervised methods fall into this category.

This thesis will focus on Weakly Supervised Learning, its key concepts, and its application in visual

scene understanding. By addressing the high cost and scalability challenges associated with fully super-



Figure 1.2 The figure shows the comparison of annotations available at training time for various
beyond-supervised approaches for the task of object detection. For supervised learning, a bounding box
annotation is present in the training set for each foreground object’s instance. For weakly supervised
learning, lower-degree image-level annotation is present in the training set. For weak-semi supervised
learning, a small number of images are annotated with higher-order bounding box annotations, and
the remaining training data has lower-degree image-level annotations. In semi-supervised learning, a
small fraction of images are annotated with higher-order bounding box annotations while the rest of the
training set do not have any annotations.

vised learning, weakly supervised learning provides a compelling alternative that leverages inexpensive
and less detailed annotations while aiming to achieve fine-grained predictions. This work will delve into
the proposed framework, which bridges the gap between coarse and fine-grained annotations, enabling
its application across various visual scene recognition tasks with reduced annotation costs and improved

efficiency.

1.2 Weakly Supervised Learning

1.2.1 Problem Setting

A weakly supervised learning (WSL) problem reduces the annotation cost by using coarse (cheaper-
to-obtain) annotations at the training time instead of the fine-grained (expensive-to-obtain) annotations
required at the test time. Coarse annotations, such as image-level labels, are less detailed and easier to
acquire, often involving minimal manual effort. On the other hand, fine-grained annotations, such as
pixel-level labels or bounding boxes, require extensive manual labeling and are thus more costly. In
other words, the goal of WSL is to train a task-pertinent model using easier-to-obtain weak labels, as

seen in Fig. 1.3.

Obtaining coarse annotations is not only cost-effective (Fig. 1.1) but, with the ever-increasing visual

data available online, it is sometimes free. Indeed, a simple search for a keyword such as “car” on



an image search engine results in hundreds of freely available images. Many popular image-hosting

websites such as Flickr! allow users to tag the images with labels that can be utilized as annotations.

Using such easy-to-obtain labels enables the creation of large-scale data sets. This helps not only
scale the models to many classes but also achieve a more robust and accurate model. Moreover, in some
domains such as 3D vision, medical imaging, etc., obtaining exact (supervised) annotations is either
prohibitively expensive or impossible to acquire without expertise. For such tasks, WSL provides a

practical approach to training such predictors.

Due to these advantages, weakly supervised learning has received much attention in the computer
vision community. Numerous methods on this topic have been proposed in the past two decades to
address challenging vision tasks, including object detection [2], semantic segmentation [7], and instance

segmentation [10], among others.

Figure 1.3 Illlustration of the weakly supervised learning task in the computer vision community. The
Xx-axis represents the annotation available during training, and the y-axis denotes the target or output
task. The blue points on the line represent the supervised learning scenario, where the annotations at the
training time match the output task. The region below the line represents a strong supervision scenario
where the information contained in the training label exceeds the output task. The region above the line
represents a weakly supervised scenario where the annotation available at the training time is coarser
than what is required at the output task.

"https://flickr.com/
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1.2.2 Comparison with Other Beyond-Supervised Approaches

In what follows, we compare how WSL approaches relate to other beyond-supervised approaches
such as domain adaptation, semi-supervised learning, few/zero-shot learning, and unsupervised/self-
supervised approaches. These approaches aim to reduce the annotation cost by using fewer fine-grained

annotated training data, leveraging coarse annotations, or without using explicit annotations.

1.2.2.1 Weakly Supervised Learning vs Domain Adaptation

Domain adaptation [29] aims to adapt a model trained on one domain to perform well on a different
domain. This is useful when the training data and the target domain are not well-matched, and the model
needs to be adjusted to make accurate predictions on the target domain. Fine-tuning and transfer
learning are among the popular approaches in domain adaptation.

In domain adaptation, a large-scale training data set is available in the training domain. Only a few
training samples with fine-grained annotations are available for the target domain. This contrasts with
WSL approaches that leverage large-scale coarse annotations for both the training and target domains.

1.2.2.2 Weakly Supervised Learning vs Semi-Supervised Learning

A semi-supervised learning approach [26] aims to leverage a partially labeled data set. This means
that while some of the data in the training set has been given explicit fine-grained annotations, the rest
of the data is not annotated. The semi-supervised approach is useful in situations where it is difficult or
expensive to obtain fine-grained annotations.

The main difference between WSL and semi-supervised learning is the type of data used in training.
In semi-supervised learning, the model is trained using a small amount of labeled data with fine-grained
annotations and a large amount of unlabeled data, while in WSL, the model is trained using a large
amount of data with coarse annotations.

To leverage the advantages of both these approaches, semi-weakly supervised learning [31, 32]
is used, where only a small amount of fine-grained annotations and large-scale coarse annotations are

available during training.

1.2.2.3 Weakly Supervised Learning vs Few-Shot Learning

Few-shot learning techniques [28] attempt to train a model using a very small number of examples
with fine-grained annotations. The goal is to enable the model to generalize from the limited training
data and perform well on novel examples from the same domain or tasks. 1-shot learning and 0-shot
learning approaches are special cases of few-shot learning. In 1-shot learning, the aim is to train a
model using exemplars, and in 0-shot learning, the aim is to learn novel object classes at inference when
no training examples of it are present during training.

In few-shot learning, the training data is typically a small set of high-quality, carefully labeled ex-
amples, while in WSL, the training data is often larger but has less reliable annotations. In essence,



few-shot learning focuses on learning from a limited amount of data, while WSL focuses on learning

from noisy or unreliable data.

1.2.2.4 Weakly Supervised Learning vs Unsupervised Learning

Unsupervised learning [33] is a type of machine learning algorithm where models are trained on
data sets without any labels or pre-defined categories. The goal of unsupervised learning is to find
hidden structures in the data and to use those patterns to make predictions or decisions. One of the
main advantages of unsupervised learning is that it can be used on large data sets where it would be
impractical or impossible to label all the data manually. Self-supervised learning [30] is a type of
unsupervised learning algorithm where a model is trained on a data set that has been automatically

labeled by the model itself, rather than being labeled by humans.

The key difference between unsupervised learning and WSL approaches is that unsupervised ap-
proaches use no annotations, while WSL approaches have coarse annotations labeled by an external
source. On the other hand, in self-supervised learning, the labels are generated by the model itself. An-
other difference is the type of information learned from the labels. In unsupervised and self-supervised
learning, the goal is to learn more complex or abstract representations of the data, using the data itself
as the source of supervision. In contrast, WSL typically aims to make predictions or decisions using

coarse annotations.

Considerable progress has been achieved in methods based on the self-supervised understanding of
visual scenes [34-36]. Yet, there remains a gap in performance when these methods are compared to
weakly supervised approaches. The current state-of-the-art self-supervised method for object detection
and instance segmentation [35] achieves 31.0% mAPES* on the PASCAL VOC 2012 data set for the
object detection task using a ResNet50 base model. On the same data set but using an inferior base
model (VGG16), our proposed approach [37] (Chapter 5) achieves 48.4% mAPESX. For the instance
segmentation task, they achieve 31.0% mAPj 5, on the PASCAL VOC 2012 data set, while our pro-
posed approach [38] (Chapter 6) with the same base network and setting achieves 50.9% mAPY{ »,.
This demonstrates the relevance of weakly supervised learning for visual scene understanding over self-

supervised approaches.

1.2.2.5 Hybrid Supervision

Hybrid supervision is a method of training machine learning models that combines multiple types
of supervision or labeling [39—41]. This can include both human-provided labels, such as those used
in traditional supervised learning, as well as automatically generated labels, such as those produced
in WSL, semi-supervised, or self-supervised learning algorithms. The goal of hybrid supervision is to
combine the strengths of different labeling methods in order to improve the performance of the models

with the least annotation cost.



1.2.3 Challenges

As WSL methods employ coarse annotations, the learning framework needs to address not only typ-
ical issues, such as intra-class variations in appearance, transformations, scale, and aspect ratio, encoun-
tered in conventional fully supervised approaches, but also the challenges caused by the inconsistency
between available coarse annotations and real supervisory signals. In WSL, the model’s accuracy and
learning process are often interdependent. The key is propagating the coarse supervisory signal to the
task-specific supervisory signal for the learning process. Since each coarse annotation in the training
image can correspond to numerous fine-grained annotations of varying accuracy, propagating such weak
supervision inevitably involves a large amount of ambiguous and noisy information in each training in-
stance. For example, in weakly supervised object detection, each image-level label can correspond to
several bounding boxes with varying levels of accuracy. As a concrete example, consider an image
annotated with the label cat. While this coarse annotation indicates the presence of a cat in the image,
it does not specify its exact location or outline. Consequently, multiple candidate bounding boxes may
represent the object, some capturing the full extent of the cat, others focusing on partial regions, and

some even including irrelevant background objects.

More formally, the issue of ambiguous and noisy information transfer from coarse annotations to
fine-grained annotations can be characterized under learning under uncertainty. The paradigm of

learning under uncertainty introduces the following challenges in the WSL process:

* Learning with inexact labels: This issue arises primarily due to the ambiguity between coarse
annotations and the output task. Without precise annotation or definition, a learner may struggle
to determine whether an object category label corresponds to a discriminative object part or the
entire object region. For example, consider an image annotated with the label car. The label
does not specify whether the learner should focus on the entire car or its components, such as
the wheels or headlights, leading to potential confusion during training. As a result, the output
inferred by the learner may contain many inaccurate samples, including those with local object

parts, thus negatively affecting its accuracy.

* Learning with noisy samples: As there is no additional information to separate objects from the
background or other co-occurring objects, it is difficult to distinguish between them. For instance,
in an image labeled with train, the learner might mistakenly associate the label with irrelevant
elements like railway tracks, or in the case of an image labeled with aeroplane, it might associate
the label with the surrounding sky. Therefore, the learner may incorrectly tag the background or
co-occurring objects with the same label as the object of interest, affecting its accuracy.

Furthermore, issues encountered in supervised approaches, such as inter- and intra-class variance
in appearance, diversity of training images, scale, and aspect ratio, are further exaggerated under the

learning under uncertainty paradigm due to the lack of task-level supervisory signals.



Figure 1.4 Flowchart of the general framework of weakly supervised learning.

1.2.4 General Framework

To address the issues of learning under uncertainty described above, a plethora of approaches have
been developed in the past two decades. These approaches broadly contain one or a combination of the
following steps:

e Priors and Hints: The key idea in WSL is to use coarse annotations to create a much more

powerful predictor. The essential ingredients for WSL are the use of priors and hints.

Priors refer to assumptions or beliefs about a task that are independent of specific images or
annotations. These include information about the problem known before examining the data.
Common examples include object priors such as shape, size, and contrast; relative motion to
determine object boundaries; and similarity across images to identify standard object features.
Priors can be explicitly defined or implicitly encoded through dataset biases, model architectures,

or hyperparameters.

Hints are forms of indirect supervision derived from available annotations for each image. Ex-
amples include image-level labels, bounding boxes, image captions, clicks, scribbles, and sparse

temporal labels.

Some common priors and hints are listed in Table 1.1.

* Initialization: The initialization stage leverages certain prior knowledge to propagate coarse an-
notations to the task level, thus generating fine-grained annotations (albeit with label noise, sample
bias, and limited accuracy). These generated task-level annotations can either be treated as the
final output or as training annotations for the next stage (refinement stage). During this stage,
efforts focus on enhancing the quality of generated task-level annotations to create training in-

stances with accurate labels, high diversity, and a high recall rate.



Table 1.1 Most common priors and hints. Priors represent task-specific assumptions, while hints are
indirect forms of supervision derived from available annotations.

Prior Hint
Size Image labels
Shape Image captions
Location (object-centered representation) Bounding Boxes
Number of instances Video labels
Contrast (boundaries, saliency) Click inside object
Class distribution Scribbles
Motion Sparse temporal labels
Similarity across images Eye gaze
Similarity with external images Localized narrative

* Refinement: The refinement stage leverages new instance samples obtained from the initializa-
tion stage to train a task-specific supervised model and ultimately obtain the desired predictor.
Since the annotations generated during the initialization stage may contain inaccuracies, efforts
during the refinement stage focus on improving the learner’s robustness to cope with noisy, biased

labels and enhance its capacity to utilize unlabeled instance samples effectively.

The above learning steps should collaborate effectively to address the challenges of the learning
under uncertainty paradigm. A typical approach to realizing such collaboration involves either opti-
mizing initialization and refinement independently, iteratively alternating between these steps, or jointly
optimizing them.

A typical WSL method incorporates one or more of these steps, often applying them in a cascaded

sequence. Visually, these steps are related as shown in Fig. 1.4.

1.3 Scope and Contributions

1.3.1 Scope

This thesis focuses on advancing weakly supervised learning (WSL) to enable the training of deep
neural networks for complex scene understanding tasks using static image data. It addresses the funda-
mental challenge of relying on coarse annotations or weak labels — which are less detailed but cheaper
to obtain — during training, while aiming for fine-grained predictions — which are detailed and task spe-
cific outputs — at the test time. The primary focus is on developing a unified probabilistic framework
that explicitly models uncertainty of transferring information from weak annotations to fine-grained

predictions across a range of computer vision tasks. Specifically, the thesis focuses on:

* Developing a generalized approach to WSL using probabilistic principles that explicitly models
uncertainty and can be applied across multiple scene recognition tasks.



* Addressing key challenges in WSL, such as learning with inexact and noisy labels, and ensuring

effective propagation of coarse annotations to task-specific predictions.

* Demonstrating the versatility of the proposed framework through its application to tasks such as
human pose estimation, object detection, and instance segmentation incorporating relevant priors

and hints.

» Achieving state-of-the-art performance on benchmark data sets by refining coarse annotations to

generate accurate fine-grained predictions.

1.3.2 Contributions

The thesis introduces a unified probabilistic framework for WSL that is adaptable to various visual
scene understanding tasks. A key feature of this framework is the use of two distinct distributions to
model the initialization and refinement tasks: generating accurate fine-grained labels during training
for supervised task-specific models, and leveraging only the task-specific models at test time. These
distributions are aligned using a novel dissimilarity coefficient-based objective, contrasting with existing
methods that often burden a single model with conflicting tasks and lack explicit uncertainty modeling.
Specifically:

* Conditional Distribution: This distribution generates task-specific prediction based on coarse
annotations, such as action labels or image-level annotations, using deep generative models. It
provides a mechanism to sample plausible outputs while accounting for the inherent ambiguity in

weak annotations.

* Prediction Distribution: This distribution generates final test-time predictions independent of
weak annotations. By aligning it with the conditional distribution, the framework ensures that

information from weak annotations is effectively transferred to fine-grained predictions.

These distributions are aligned using a novel dissimilarity coefficient loss, which minimizes their di-
vergence to improve prediction accuracy and robustness. The optimization proceeds by either jointly
training both distributions or by employing coordinate descent strategy where the two distributions are
optimized iteratively by keeping one constant. The framework’s flexibility enables the integration of
diverse priors and hints, such as activation maps and spatial constraints, making it adaptable to a wide
range of vision tasks.

The efficacy of the proposed framework is demonstrated on three increasingly complex visual scene

understanding tasks: human pose estimation, object detection, and instance segmentation.

* Human Pose Estimation: The framework predicts detailed human pose keypoints from coarse
annotations like action labels. By modeling pose uncertainty and incorporating prior knowledge
of human body structures through the conditional distribution, the framework aligns these with

the prediction distribution using the dissimilarity coefficient loss. The framework employs a
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novel deep generative model, DISCO Nets, for the conditional distribution and the state-of-the-
art Hourglass Networks for the prediction distribution, achieving significant improvements on
benchmarks like MPII and JHMDB.

* Object Detection: The proposed framework addresses uncertainty in object localization using a
diverse range of coarse annotations, including image-level labels, count annotations, point anno-
tations, and scribble annotations. The conditional distribution incorporates priors such as class
activation maps, spatial regularization, and higher-order constraints to ensure that the generated
fine-grained labels align with the provided coarse annotations. To efficiently sample from this
complex conditional distribution, a greedy iterative algorithm is introduced, leveraging the dis-
crete generative model Discrete DISCO Nets. The prediction distribution is modeled using the
widely adopted Fast R-CNN model, and the two distributions are aligned through a dissimilar-
ity coefficient loss. This approach achieves state-of-the-art performance on benchmark data sets,
including PASCAL VOC 2007, PASCAL VOC 2012, and MSCOCO 2017.

* Instance Segmentation: The proposed framework models uncertainty in pseudo-label genera-
tion through the conditional distribution, utilizing diverse coarse annotations such as image-level
labels and bounding box annotations. The conditional distribution integrates a semantic class-
aware unary term, a boundary-aware pairwise smoothness term, and an annotation-consistent
higher-order term. Samples from this complex distribution are generated using a greedy itera-
tive algorithm and a discrete generative model, such as Discrete DISCO Net. The prediction
distribution is modeled with the widely adopted instance segmentation approach, Mask R-CNN.
Alignment between the two distributions is achieved through a dissimilarity coefficient loss. This
framework delivers state-of-the-art performance on the benchmark PASCAL VOC 2012 data set.

1.4 Thesis Outline

The thesis is organized as following chapters:

* Chapter 1 Introduction In the first chapter, we discuss the motivation behind our work, focusing
on the use of weakly supervised learning for visual scene understanding. We present a comparison
of this approach with other methods beyond supervised learning and analyze the general trends in
research within this domain. Additionally, we outline the scope of our research.

* Chapter 2 Prior Work In this chapter, we discuss the history of weakly supervised approaches
and their application to visual scene understanding. We examine the critical advances that have

improved performance in this area.

¢ Chapter 3 Dissimilarity Coefficient based Weakly Supervised Learning Framework In this
chapter, we present the proposed weakly supervised probabilistic framework based on the dissim-
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ilarity coefficient loss. We also discuss the prior work that directly enabled the development of

this framework.

Chapter 4 Weakly Supervised Human Pose Estimation In this chapter, we discuss the problem
of learning human pose estimation using cheaper-to-obtain action annotations. We present our
probabilistic weakly supervised framework based on the dissimilarity coefficient objective and
demonstrate its efficacy on the MPII and JHMDB data sets.

In Chapter 5 Weakly Supervised Object Detection In this chapter, we present our work on
the weakly supervised object detection task, which aims to learn object detection models using
image-level (classification) annotations. We discuss the challenges of modeling the problem due
to the complex conditional distribution and present an efficient solution by employing a discrete
generative model. We demonstrate the efficacy of our proposed approach on the PASCAL VOC
2007, 2012 and MS COCO 2017 data sets. This chapter was part of the CVPR 2019 paper and

also the under submission work

Chapter 6 Weakly Supervised Instance Segmentation In this part we will show how to model
for the task of weakly supervised instance segmentation, where we required to train an instance
segmentation model using image-level (classification) annotations. In order to overcome the chal-
lenges of instance segmentation, we carefully design the conditional distribution that has a unary
term, a pairwise term, and a higher-order term. We model the distribution using a discrete gen-
erative model and present an efficient sampling algorithm. We demonstrate the efficacy of our
proposed approach on PASCAL VOC 2012 dataset.

Chapter 7 Conclusion and Future Work This part of the thesis would include a summary of the

contributions and would draw directions for future research in related areas.
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Chapter 2

Prior Work

Over the past two decades, weakly supervised learning (WSL) has been an active area of research,
driven by its ability to address the challenge of limited fully labeled data for complex visual tasks.
This chapter explores the evolution of weakly supervised approaches in visual scene understanding,
highlighting key milestones and seminal works that have significantly advanced performance in this
domain.

WSL methods can be broadly classified into three categories: (i) classical approaches based on
handcrafted features, (ii) methods leveraging feature representations from pre-trained deep models, and
(iii) end-to-end deep weakly supervised learning algorithms. This chapter reviews foundational works
and techniques from each category, examining their contributions, strengths, and limitations. By delv-
ing into these categories, we aim to provide a comprehensive perspective on the progression of WSL

methodologies and their transformative impact on computer vision.

2.1 Classical Approaches to Weakly Supervised Learning

Classical approaches to Weakly Supervised Learning (WSL) predominantly rely on handcrafted fea-
tures rather than deep features. These methods are typically grounded in Latent Variable Models
(LVMs), a statistical framework that links observed variables to a set of latent (or hidden) variables.
Latent variables encapsulate an underlying structure that explains relationships within the observed
data. In WSL, observed variables often represent tasks associated with coarse annotations (e.g., image
classification), while latent variables model more intricate outputs (e.g., object detection or semantic
segmentation).

This section explores three primary types of LVMs and their applications in WSL for visual tasks:
Multiple Instance Learning (MIL) Models, Max-Margin Models, and Probabilistic Graphical
Models (PGMs).

2.1.1 Multiple Instance Learning (MIL) Models

Multiple Instance Learning (MIL), introduced by Dietterich et al. [42], organizes training data into
sets known as "bags," each labeled with a single label. The defining assumption, termed the standard
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MIL assumption, posits that a bag is positive if at least one of its instances is positive. MIL’s goal
is to infer instance labels or bag-level predictions by resolving ambiguities within training bags. For
example, Dietterich et al. [42] applied MIL to predict drug activity, where molecular conformations
(instances within a bag) could either induce a positive or negative effect.

The key challenge in MIL lies in identifying the specific instances within a positive bag that con-
tribute to the bag’s label. Early methods like axis-parallel rectangles [42] addressed this by constructing
decision boundaries for instance-level classification. Maron and Lozano-Pérez [24] proposed a more
generalized framework using diversity density, which evaluates the likelihood of an instance being a
positive contributor across all positive bags while remaining absent in negative ones. This was imple-
mented using an expectation-maximization (EM) algorithm for iterative optimization.

Foulds and Frank [43] expanded upon MIL by introducing the collective MIL assumption. Under
this assumption, a positive bag may not be characterized by a single positive instance but rather by an
interaction or distribution of instances. This collective perspective broadens the applicability of MIL,
allowing it to model more complex relationships between instances within a bag.

MIL algorithms have further evolved to include techniques such as nearest-neighbor-based meth-
ods [44], which measure similarity between bags, and ensemble approaches like boosting [45], which
combine weak classifiers to enhance prediction performance. Neural network-based methods [46] have
also been proposed, enabling MIL to leverage nonlinear relationships between features.

In visual tasks, MIL has been extensively used for object detection and localization. Images are
treated as bags containing potential object proposals (instances). The learning process alternates be-
tween training object classifiers and refining the selection of positive instances. Strategies such as ini-
tialization improvements [47], regularization with additional cues [48], and relaxed MIL constraints [49]

have been developed to improve performance and address inherent challenges.

2.1.2 Max-Margin Models

Max-Margin Models introduce structured prediction methods leveraging latent variables. Yu and
Joachims [50] pioneered a Latent Structured Support Vector Machine (SVM) for structured pre-
diction tasks, utilizing the concave-convex procedure (CCCP) for optimization. This framework in-
corporates latent variables into the learning process to capture task-specific structures. By modeling
latent variables, the method effectively handles hidden relationships within the data that are not directly
observable.

Kumar et al. [47] advanced this approach by proposing self-paced learning, which iteratively selects
easy samples to train latent SVMs. This curriculum-inspired approach mimics human learning, where
simpler tasks are learned first, gradually increasing complexity. By focusing on "easier" samples early
in training, self-paced learning mitigates the risk of local minima and improves model convergence.

In subsequent work, Kumar et al. [51] introduced a probabilistic framework for latent variable mod-
eling. This approach uses two separate distributions to capture uncertainty over latent variables: one for

training and another for inference. A dissimilarity coefficient-based loss encourages agreement between
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these distributions, facilitating task-specific loss functions dependent on latent variables. For example,
this framework allows seamless integration of structured losses like Intersection-over-Union (IoU) in
segmentation tasks.

Other advancements include modeling output distributions conditioned on input and latent variables,
as introduced by Miller et al. [52]. Their approach maximizes the margin between the Rényi entropies
of correct and incorrect outputs, offering a principled way to handle ambiguity in weakly supervised
tasks.

Max-margin models have found applications in object detection, semantic segmentation, and struc-
tured prediction, where modeling latent structures is critical. These methods’ ability to incorporate

task-specific constraints and loss functions makes them versatile for various WSL problems.

2.1.3 Probabilistic Graphical Models (PGMs)

Probabilistic Graphical Models (PGMs) provide a powerful framework for modeling dependencies
among variables, making them suitable for WSL tasks. Boykov and Jolly [53] introduced a graph-cut-
based method for interactive object segmentation. This method represents the image as a graph, where
pixels are nodes and edges encode pairwise similarities. By minimizing a max-flow min-cut objective,
the algorithm segments objects with minimal user interaction.

Rother et al. [54] extended this concept with GrabCut, a semi-automatic segmentation method.
GrabCut initializes segmentation using user-provided bounding boxes or masks and iteratively refines
the result using a Gaussian Mixture Model (GMM) for color distributions and a Markov Random
Field (MRF) to enforce spatial smoothness. This iterative process ensures accurate and consistent
segmentation boundaries.

Krihenbiihl and Koltun [55] proposed a novel approach to fully connected conditional random fields
(dense CRFs), introducing efficient inference algorithms for models with pairwise potentials defined
over all pixel pairs. Dense CRFs capture fine-grained dependencies across the entire image, enabling
high-resolution predictions for tasks like semantic segmentation.

PGMs have also been employed in tasks like object detection and scene understanding, where inter-
actions among multiple components (e.g., objects, background, and context) are critical. These models
excel in scenarios where domain-specific priors can be encoded as graphical structures, offering inter-

pretability and flexibility.

2.1.4 Discussion

Classical WSL approaches have been instrumental in laying the foundation for weak supervision in

machine learning. These methods primarily utilize two categories of cues:

* Bottom-Up Cues: These include region saliency, objectness, intra-class consistency, and inter-
class discriminability. Such cues guide the model to learn discriminative features from the data,

leveraging inherent properties of the input.
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* Top-Down Cues: These provide high-level priors for appearance, structure, or semantic relation-

ships, aiding the model in refining predictions and resolving ambiguities.

The advantages of classical WSL methods lie in their simplicity and efficiency. They require only
small-scale training datasets, are computationally lightweight, and are relatively easy to implement.
However, their reliance on handcrafted features limits their performance, as they lack the representa-
tional power and complexity of modern deep-learning-based methods. Additionally, they may struggle
with generalization to complex, large-scale datasets.

Despite these limitations, ideas such as MIL frameworks, latent variable modeling, structured pre-
diction, and uncertainty estimation remain integral to state-of-the-art WSL techniques. Classical WSL
approaches have thus provided a strong conceptual and methodological foundation for subsequent ad-

vancements in the field.

2.2 Off-the-shelf Deep Model-based Approaches

This section examines WSL methods that leverage classical formulations alongside feature repre-
sentations derived from deep neural networks. These approaches can be broadly categorized into three
main types: (1) off-the-shelf deep models that utilize features extracted from pre-trained deep neural
networks and train classical models on top of them, (2) inherent cues from deep models that exploit
intermediate activations and semantic scores from neural networks, and (3) fine-tuned deep models,
where pre-trained models are fine-tuned for specific target domains. Each of these categories represents

a distinct way of integrating deep learning into weakly supervised frameworks.

2.2.1 Pre-trained Deep Features

Methods under this category rely on features extracted from pre-trained deep models to address
weakly supervised learning tasks. For instance, Song et al. [56] leverage features from the DeCAF
network [57] to address the challenge of object localization with minimal supervision. Their approach
combines a discriminative submodular cover problem with a smooth latent SVM formulation, show-
casing the utility of high-level features in identifying objects in weakly supervised scenarios. Similarly,
Wang et al. [49] propose a relaxed formulation of multiple instance learning (MIL), which is differ-
entiable and optimized using stochastic gradient descent (SGD). By using features extracted from the
FC6 layer of AlexNet [21], they effectively demonstrate how pre-trained features can improve object
discovery.

Ren et al. [58] contribute to this category with an MIL-based bag-splitting algorithm designed
to reduce ambiguity in positive image bags. This iterative method generates new negative bags and
utilizes AlexNet features to enhance object localization accuracy. Another significant contribution is
by Cinbis et al. [59], who present a multi-fold MIL objective to avoid degenerate solutions. Their
work incorporates contrastive background descriptors and Fisher Vectors, alongside AlexNet features,

to improve the precision of object localization.
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2.2.2 Inherent Cues from Deep Models

This category focuses on exploiting inherent properties of deep neural networks for weakly super-
vised learning. Oquab et al. [60] highlight the dual utility of fully convolutional neural networks trained
for image classification tasks, demonstrating their ability to localize objects within images without ad-
ditional supervision. This underscores the potential of classification-trained networks for spatial reason-
ing.

Building on this, Bency et al. [61] leverage spatial and semantic patterns captured in convolutional
layers to propose an efficient beam search-based approach. Their method uses deep feature maps
to localize multiple objects in images. Zhou et al. [62] introduce Class Activation Maps (CAMs)
for CNNs with global average pooling (GAP). CAMs provide an interpretable mechanism to visualize
discriminative object parts detected by CNNs, bridging the gap between model performance and human
understanding.

Selvaraju et al. [63] expand on the concept of CAMs with Grad-CAM, a gradient-weighted class
activation map technique. Grad-CAM offers visual explanations for CNN-based networks without
requiring architectural changes, making it versatile for various tasks, including classification and visual
question answering (VQA). This technique has become an essential tool for interpreting deep learning

models.

2.2.3 Fine-tuned Deep Models

Fine-tuning pre-trained models for specific target domains represents another key approach in weakly
supervised frameworks. Chen and Gupta [64] propose a two-stage methodology. Initially, a CNN is
trained on easy images from Google search, followed by fine-tuning on complex images from Flickr.
This process refines learned representations, enabling better generalization to challenging datasets.

Li et al. [65] introduce a two-stage domain adaptation process for object localization. The first
stage involves classification adaptation, which refines object proposals, while the second stage employs
a mask-out strategy to generate class-specific object proposals and mine confident candidates. Shi et
al. [66] adopt a knowledge transfer approach, utilizing the concepts of "things" and "stuff" from a source
dataset to improve object localization on a target dataset. Their iterative training of Fast RCNN models
with semantic segmentation as pseudo-labels demonstrates the power of leveraging prior knowledge.

Khoreva et al. [67] iteratively train CNNSs for semantic segmentation by generating pseudo-labels us-
ing a grabcut-like algorithm. This iterative refinement approach underscores the potential of combining

weak supervision with algorithmic feedback loops to achieve accurate segmentation results.

2.2.4 Discussion

The integration of off-the-shelf deep models into weakly supervised learning frameworks has yielded
several important insights. High-level features extracted from pre-trained models significantly enhance

the weakly supervised learning process by providing rich data representations. CNN models trained
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with image-level supervision are particularly adept at inferring discriminative spatial locations, making
them invaluable for tasks like object localization and segmentation. Additionally, pre-training on large-
scale auxiliary datasets has proven to be a simple yet effective strategy for encoding valuable cues that
benefit weak supervision.

However, off-the-shelf approaches are not without limitations. They often lack the adaptability and
specificity of end-to-end trainable deep weakly supervised models tailored for particular tasks. For
example, the loss of error propagation and the absence of task-specific architectural optimization re-
duce their effectiveness in applications requiring precise localization or semantic segmentation. Future
research focuses on bridging these gaps by integrating the strengths of pre-trained features with task-
specific end-to-end learning approaches, thereby enhancing the overall capabilities of weakly supervised

learning frameworks.

2.3 Deep Weakly Supervised Learning Frameworks

Deep weakly supervised learning frameworks represent a significant advancement over earlier meth-
ods by adopting an end-to-end training paradigm. This allows for the simultaneous learning of feature
representations and task-specific networks, leveraging the power of deep neural networks. These ap-
proaches can broadly be categorized into two types: (i) single-network training approaches and (ii)
multi-network training approaches.

2.3.1 Single-Network Training Approaches

In single-network training, the learning framework employs a single deep neural network to jointly
optimize feature representation and task objectives. Pinheiro and Collobert [68] introduced a CNN-
based model that emphasizes important pixels for classification. By incorporating image-level priors
and smoothing constraints, the model effectively transitions from image-level to pixel-level labeling.
Similarly, Pathak, Krahenbuhl, and Darrell [69] proposed a constrained optimization framework for
CNN:ss, enabling the optimization of linear constraints using stochastic gradient descent. This method
significantly improved weakly supervised segmentation performance.

Papandreou et al. [70] presented an expectation-maximization (EM)-based training algorithm ca-
pable of handling both weak and strong annotations. This provides a flexible framework for hybrid
supervision in semantic segmentation. Expanding on this idea, Kolesnikov and Lampert [71] proposed
a loss function guided by three principles: seeding with weak localization cues, expanding objects based
on class occurrence, and constraining segmentation to align with object boundaries.

Bilen and Vedaldi [72] introduced a two-stream architecture that combined classification and detec-
tion streams, merging their outputs for optimized weakly supervised object detection. Diba et al. [73]
extended this idea with a three-stage cascaded CNN to identify discriminative regions, compute object

segmentation, and perform multiple instance learning (MIL) for object detection. Similarly, Vernaza and
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Chandraker [74] introduced a differentiable random-walk-based label propagation algorithm, enhancing
segmentation performance by learning pixel affinities.

Singh et al. [75] presented the "hide-and-seek" data augmentation technique, which randomly hides
patches in training images to force the model to discover less discriminative but relevant regions. Build-
ing on the idea of pixel-level optimization, Ahn and Kwak [76] introduced AffinityNet, which generates
semantic affinity labels using class activation maps (CAMs) and leverages these labels to produce seg-

mentation masks.

2.3.2 Multi-Network Training Approaches

Multi-network training leverages multiple specialized networks that collaborate to enhance the
overall learning process. Tang et al. [77] combined a weakly supervised detection network (WSDDN)
with a multi-stage instance classifier for progressive refinement. The pseudo-labels generated by this
process were then used to train Fast RCNN [1], further improving detection performance.

Ge, Yang, and Yu [78] introduced a curriculum learning approach for intermediate labeling and em-
ployed metric-learning and density-based clustering algorithms for object localization. This approach
enabled more precise localization of objects in the training images. To address challenges in identifying
less obvious regions, Zhang et al. [79] proposed the mean Energy Accumulated Scores (mEAS) crite-
rion to measure image difficulty. By using feature masking, the network was guided to focus on less
discriminative regions, thereby improving object detection performance.

Tang et al. [80] developed a weakly supervised region proposal network with a two-stage process.
The first stage generated coarse proposals based on objectness scores, while the second stage refined
these proposals to improve detection accuracy. Extending this line of work, Zhang et al. [81] introduced
the W2F framework, which employs a pseudo-ground-truth excavation algorithm to refine bounding
boxes. A fully supervised object detection model [1,3] was then trained using these refined bounding

boxes, achieving high detection precision.

2.3.3 Discussion

Deep weakly supervised learning frameworks combine the strengths of deep learning and weakly
supervised learning. Single-network approaches simplify the process by introducing mechanisms like
MIL and leveraging end-to-end training, which eliminates the need for complex initialization stages.
These methods are particularly suited for tasks requiring efficient and scalable solutions without heavy
computational overhead.

Multi-network approaches, on the other hand, enhance performance by integrating multiple task-
specific networks. These methods benefit from the collaborative power of specialized components,
which can complement each other to achieve superior results. The synergy between these components
allows for more robust learning and better handling of complex tasks.

However, the effectiveness of these methods is often constrained by the quality of information ex-

tracted from the weakly supervised components. Incorporating prior knowledge into the training process
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could significantly improve performance by reducing reliance on the weakly supervised modules alone.
Future research could focus on hybrid strategies that combine the advantages of both single-network and
multi-network approaches while leveraging external priors to guide the learning process. Such advance-
ments would open new possibilities for tackling large-scale, weakly annotated datasets with greater

efficiency and accuracy.
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Chapter 3

Dissimilarity Coefficient based Weakly Supervised Learning Framework

In this chapter, we present a weakly supervised probabilistic framework based on the dissimilarity
coefficient loss, a novel approach to addressing challenges in learning with limited or imprecise super-
vision. The chapter begins with a a discussion of the preliminaries that establish the foundation for
the proposed framework. In the preliminaries, we formally define the dissimilarity coefficient objective
and review key prior works that have directly influenced this research, emphasizing their relevance to
weakly supervised learning.

Building on this foundation, we proceed to formally define the proposed probabilistic framework,
which integrates the dissimilarity coefficient loss within a structured design to effectively model and
utilize weakly labeled data. By addressing gaps identified in prior research and leveraging the strengths
of the dissimilarity coefficient, our framework offers a scalable and robust solution for weakly super-

vised learning scenarios.

3.1 Preliminaries

This section introduces the key concepts and objectives underlying the proposed framework. We
first define the dissimilarity coefficient objective, the central component of this work, and then review
foundational studies that have motivated its development, setting the stage for the contributions detailed

in subsequent sections.

3.1.1 Rao’s Dissimilarity Coefficient

Dissimilarity and diversity are key concepts in understanding the relationships within and between
distributions. Dissimilarity measures the separation or distinction between two distributions, quantify-
ing how different they are from each other. In contrast, diversity captures the variability or heterogeneity
within a single distribution, reflecting how diverse its samples are. These measures are particularly im-
portant in tasks where understanding both the internal structure of a distribution and the relationship
between multiple distributions is essential, such as clustering, classification, and generative modeling.

Rao [82] introduces the dissimilarity coefficient as a measure of the difference between two dis-

tributions Pry(-) and Pra(), combining their mutual differences with adjustments for their internal
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variability. The diversity coefficient DIV (Pr1, Pra) quantifies the expected difference between two
distributions based on a task-specific loss function A(-, -), which measures the difference between sam-

ples drawn from these distributions. Formally, the diversity coefficient is defined as:

.DIVA(PI'l, PI'Q) = Eylem(-)[EyzNPrg(-) [A(yh Y2)”
=3 3 A(y1.y2) Pri(y1) Pra(y), 3.1y

Y1€Y y2€)

where ) is the sample space, and A(y1,y2) is a symmetric, non-negative function capturing the differ-
ence between two output samples y; and y». For a single distribution, the diversity DIV (Pry, Pry)
represents the heterogeneity within Prq (-) by averaging pairwise differences between its samples.

Using the diversity coefficient, the dissimilarity coefficient between two distributions Pr(-) and
Pra(+) is defined as:

DISCA(Pry,Prg) = DIVA(Pry, Pry) — vDIVA(Pro, Pro)

(3.2)
— (1 —v)DIVA(Pry, Pry),

where v € [0,1] controls the relative contribution of the self-diversity terms. The self-diversities
DIVA(Pry,Pry) and DIVA(Pro, Pra) measure the internal variability within Pr;(-) and Pra(-), re-
spectively. By subtracting a convex combination of self-diversities, the dissimilarity coefficient captures
the "extra diversity" between the two distributions beyond their internal heterogeneity.

Rao, in their paper, uses v = 1/2, which ensures symmetry, i.e., DI SCa (Pr1, Pra) = DISCAa(Pro,
The formulation above, however, is more generic and allows flexibility in defining the relative impor-
tance of each self-diversity term.

In this context:

o Self-Diversity (DIVa (Pry, Pri) or DIVA(Pra, Pra)): Measures the internal variability within a
single distribution, reflecting how heterogeneous its samples are.

* Cross-Diversity (DIVa(Pry, Prg)): Captures the average difference between two distributions,
quantifying how distinct their samples are in comparison to each other.

* Dissimilarity (DISCx(Pri, Pro)): Quantifies the distinction between two distributions, com-

bining their cross-diversity with adjustments for their internal heterogeneity.
The dissimilarity coefficient has desirable properties:

* Guarantee: DISCa(Pri,Prg) = 0 <= Pry(-) = Pry(-) within the domain of the two distri-
butions, given a symmetric, non-negative loss function A(-, -) appropriate for the task at hand.

e Symmetry: When v = 1/2, the measure is symmetric, ensuring that DISCa(Prq,Pry) =
DISCA(PI‘Q, Prl).
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* Non-Negativity: The coefficient is non-negative (DI1SCa (Pr1, Pry) > 0), as it is derived from

a Jensen-type difference.

* Flexibility: By choosing a suitable loss function A(-, -) and varying -, the framework can adapt

to various application contexts.

This framework encourages the alignment of Pri(-) and Pry(-) by penalizing their dissimilarity,
while the self-diversity terms promote meaningful variability within each distribution.

While the dissimilarity coefficient offers a principled way to compare and align distributions, its
utility extends beyond analysis — it can also serve as a powerful training objective. In modern machine
learning, model misspecification is the norm: no model class perfectly captures the true data-generating
process. Under such conditions, there is no uniquely correct parameterization; the model’s behavior
is dictated entirely by the optimization criterion. Crucially, most models are trained using generic
divergences such as Kullback-Leibler (KL) or Jensen—Shannon (JS) divergence, which prioritize fidelity
to the full data distribution. These objectives penalize discrepancies uniformly, even in regions that do
not influence downstream task performance—Ileading to inefficient or even counterproductive fits in
practice.

The dissimilarity coefficient objective (DISCO) addresses this limitation by embedding the task-
specific loss function A directly into the learning objective. This ensures that the model prioritizes
aspects of the predictive distribution that actually matter for evaluation (e.g., mAP, IoU, or domain-
specific metrics), while allowing flexibility in dimensions irrelevant to the task. Moreover, the tunable
parameter -y governs a trade-off between mode-seeking and diversity, encouraging either sharper or
more spread-out predictions as required. In contrast to KL and JS, which lack such adaptability, DISCO
enables models to remain calibrated and robust under misspecification by aligning training with the true
evaluation criterion. As a result, it forms a theoretically grounded and practically effective foundation

for training task-aware probabilistic models.

3.1.2 Modeling Latent Variables for Loss-Based Learning

Kumar et al. [51] propose a framework based on a dissimilarity coefficient objective to address the
challenges of weakly supervised training by explicitly modeling uncertainty over the latent variables.
The approach separates the tasks of modeling uncertainty during training and making accurate predic-

tions during testing through two distinct distributions:

* A conditional distribution, a log-linear model parameterized by 6, captures the uncertainty in
latent variables given an input-output pair. This distribution models variability in latent variables

and incorporates loss functions that depend on both the output and latent variables.

¢ A delta distribution, parameterized by w, provides pointwise predictions for the output and

latent variables given an input, ensuring accurate test-time predictions.
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To align these distributions, Kumar ef al. [5S1] minimize a loss-based dissimilarity coefficient inspired
by Rao’s framework [82]. This alignment ensures that the delta distribution’s predictions not only match
the observed outputs but also conform to high-probability configurations of the conditional distribution.
While similar to the latent structured support vector machine (LSSVM) formulation [50], this framework

generalizes it by:
1. Modeling uncertainty over latent variables instead of relying solely on pointwise estimates; and

2. Allowing loss functions that depend on both the output and latent variables, enhancing flexibility

and applicability.

The training objective is optimized using block coordinate descent. Starting with an initial parameter
set, the framework alternates between fixing one set of parameters and optimizing the other. The opti-
mization of w is performed using the concave-convex procedure (CCCP), while 6 is updated through
stochastic subgradient descent (SSD).

This framework extends traditional latent variable models by accommodating loss functions depen-
dent on latent variables, making it well-suited for complex tasks such as object detection and action
detection. Experiments on public data sets demonstrate its effectiveness, underscoring its potential for
a wide range of weakly supervised learning applications.

While this framework provides a strong foundation for modeling latent variables, adapting it to
complex distributions and implementing it within deep learning systems remains a significant challenge.

This limitation motivates our proposed probabilistic framework, which aims to address these gaps.

3.1.3 DISCO Nets: Dissimilarity Coefficient Networks

Dissimilarity Coefficient Networks (DISCO Nets) [83] are probabilistic generative models designed
to address the challenge of modeling uncertainty in predictions for structured output problems. They
leverage deep neural networks to efficiently sample from posterior distributions while aligning the train-
ing process with task-specific objectives. By employing a dissimilarity coefficient, DISCO Nets min-
imize divergence between the true and predicted distributions and balance accuracy with diversity in
predictions through a tunable parameter, y. This makes them particularly effective in scenarios where
output uncertainty plays a critical role.

DISCO Nets generate samples by taking input data x and random noise z as a pair. The input x is
processed through several convolutional layers, and the output is flattened and concatenated with z. This
combined vector is then passed through dense layers to produce the output y. By varying the noise z, the
model generates diverse output candidates, demonstrating flexibility in where noise can be incorporated
within the network architecture. The DISCO Nets architecture is shown in figure 3.1.

To make a single prediction from these diverse candidates, DISCO Nets employ the principle of
Maximum Expected Utility (MEU). This approach selects the prediction ya,,, that minimizes the ex-
pected task-specific loss Ak, calculated across all sampled candidates. Formally, the prediction is
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Figure 3.1 For a single depth image x, using 3 different noise samples (z1, z2, z3), DISCO Nets output
3 different candidate poses (y1,y2,y3) (shown superimposed on depth image). Best viewed in color.

expressed as:
K

YA, = argmin Z Aux (¥, v, (3.3)
RELK] jr—1 £k

where {y',...,y’} are the candidate outputs generated for the input x. This mechanism ensures that
the selected prediction aligns closely with the task-specific objectives, balancing accuracy and uncer-

tainty effectively.
The training objective of DISCO Nets is to minimize a dissimilarity coefficient that measures the
divergence between the true data distribution P and the model’s predicted distribution (). This objective
encourages the predicted distribution ) to align with P while maintaining diversity in the generated

samples. The objective function is defined as:

where DIV (P, Q) represents the expected task-specific loss between samples from P and @), and
DIVA(Q, Q) promotes diversity within ). Note that the term DIV (P, P) = 0 as P is a delta distribu-
tion since it denotes the true data distribution. The parameter v € [0, 1] balances accuracy and diversity
in predictions. This optimization is performed using gradient descent on the sampled candidates.
Unlike GANs or VAEs, DISCO Nets do not require adversarial training or specific network archi-
tectures, making them more robust and easier to implement. They outperform existing probabilistic and

non-probabilistic models, including GANs, on tasks like hand pose estimation.

3.1.3.1 Discrete DISCO Nets: Making DISCO Nets Discrete

Discrete DISCO Nets [84] extend the original DISCO Nets in their ability to handle discrete and
structured output spaces. For discrete outputs, the sampling process involves the use of a scoring func-

tion Sf,f (y.), which evaluates each potential output y,. based on the input x, random noise z*, and model
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parameters 0. This scoring rule assigns a value to each candidate output, reflecting how well it aligns

with the model’s learned distribution. The sampling process is mathematically defined as:

y¥ = arg max S (y.) (3.5)
yey

Here, the arg max operator selects the output y with the highest score, ensuring that the sampled out-
put reflects the structured dependencies in the data. The inclusion of random noise z introduces vari-
ability into the process, promoting diversity in the predictions. In Discrete DISCO Nets, the loss is
non-differentiable due to the arg max operation in the sampling step, unlike continuous DISCO Nets
where the loss is inherently differentiable. To address this, the differentiability of the scoring func-
tion is leveraged to estimate gradients. Direct loss minimization is used to approximate the gradient
of the non-differentiable loss function, ensuring convergence to the true gradient and enabling effective

optimization. This approach allows Discrete DISCO Nets to efficiently handle discrete outputs.
DISCO Nets and their discrete variant are versatile models capable of adapting to diverse applications
by incorporating task-specific loss functions, making them particularly suitable for structured prediction
tasks under uncertainty. Although these models show improved performance in such scenarios, their
current formulation relies on supervised training, assuming the true data distribution P to be a delta
distribution. To address this limitation, our proposed framework extends DISCO Nets to handle weakly
supervised data and more complex data distributions, broadening their applicability and enhancing their

capabilities for real-world problems.

3.2 Dissimilarity Coefficient based Weakly Supervised Learning Frame-
work

This section introduces the proposed probabilistic framework for weakly supervised learning, which
is built upon the dissimilarity coefficient as a central measure. We begin by defining the notations used
throughout the framework, ensuring clarity and consistency in the mathematical formulations. Next,
we formalize the learning objective, which focuses on minimizing the dissimilarity coefficient to align
weakly supervised data distributions. Finally, we outline the optimization process for both continuous

and discrete cases, highlighting key distinctions and ensuring adaptability to various learning scenarios.

3.2.1 Notation

Let an input image be denoted as x € R”*W>3 where H and W represent the height and width
of the image, respectively. Coarse or weak annotations are denoted by a, while the fine-grained, task-
specific prediction label is represented by y. A weakly supervised dataset W = {(x;,a;)[i =1,..., N}
consists of N image-annotation pairs, where x; is an image and a; its corresponding weak annotation.

A probability distribution is denoted as Pr(-|-; @), where 0 are the parameters of the distribution. We
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define the task-specific loss function A(y1,y2) as a non-negative, symmetric function that quantifies

the similarity between two predictions, y; and y2, for a given task.

3.2.2 Probabilistic Modeling

Given the weakly supervised data set W, our goal is to learn a task-specific supervised model capable
of predicting the fine-grained label y for a previously unseen image x. To address the challenges of
learning from coarse annotations or weak labels, we propose a probabilistic framework. Building on the
work of Kumar et al. [51] (Section 3.1.2), we define two key probability distributions: the prediction
distribution and the conditional distribution.

The prediction distribution, Pr,(y|x; 6,), models test-time predictions independently of the weak
annotations a. It is implemented using a prediction net, which typically adopts a state-of-the-art, task-
specific, fully supervised model architecture. To enable sampling, the prediction net is either converted
into a probabilistic network using DISCO Nets [83] (Section 3.1.3) or its outputs are interpreted proba-
bilistically. The parameters of this distribution, 8, correspond to the weights of the neural network.

The conditional distribution, Pr.(y|a, x; 6.), captures the uncertainty in generating fine-grained
labels based on the weak annotations a and the input image x. It is modeled using a probabilistic
conditional net, which takes the training image and weak annotation as input and outputs the fine-
grained predictions. To ensure diverse sampling from this distribution, we employ DISCO Nets [83]
(Section 3.1.3). The parameters of this distribution, 8., are also represented by the weights of the neural
network.

The conditional distribution provides additional information by ensuring that the fine-grained labels
are consistent with the weak annotations. This alignment embeds task-specific constraints and enhances
the representation of uncertainty in the fine-grained labels. The key to the success of the framework
lies in accurately modeling the conditional distribution so that it makes precise task-specific predictions.
During training, this enriched information from the conditional distribution is leveraged to guide the
learning of the prediction network, enabling it to achieve higher accuracy in generating fine-grained
predictions at test time. Note that, unlike Kumar et al. [51] (Section 3.1.2), we allow the two distribu-

tions to be arbitrarily complex.

3.2.3 Learning Objective

Given the weakly supervised dataset JV and the prediction and conditional distributions Pr;, and Pr,,
our objective is to learn the parameters 6, and 8. such that information from the conditional distribution
is effectively transferred to the prediction distribution. Due to the inherent task similarity between the
two distributions, we aim to bring them closer, ensuring that the rich information embedded in the
conditional distribution is utilized to improve the prediction distribution. Inspired by Kumar et al. [51]
(Section 3.1.2), we formulate a joint learning objective that minimizes the dissimilarity coefficient [82]

(Section 3.1.1) between the prediction and conditional distributions. Formally, we specify our learning
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objective as,

N

0,0, = areg I;linZDISCA(Prp(y\X; 0,), Pr.(yla,x;6.)). (3.6)
ple =1

Here DISC(Pr,(-),Pr.(-)) is the dissimilarity coefficient between the two distribution Pr,(-) and
Pr.(+) as defined in (3.2).

In other words, the training objective encourages the prediction distribution and the conditional dis-
tribution to align closely (i.e., have a small dissimilarity coefficient) for all training images. By min-
imizing the dissimilarity, the learning objective ensures that the prediction distribution assigns a high
probability to task-specific labels y that are consistent with the given weak annotations. During testing,
only the prediction distribution is used to infer the pose of a given image.

Computing the objective (3.6) requires evaluating the diversity coefficient terms (see (3.1)), which
involve calculating the expected loss over all pairs of y, where y € ). This computation is infeasible
due to its combinatorial complexity. However, an unbiased estimate of these terms, as well as their
gradients, can be obtained by sampling from the distributions Pr,(-) and Pr.(-). Using DISCO Nets,
we draw K samples y* from the conditional net.

For the prediction net, there are two scenarios. First, we can employ DISCO Nets to draw K samples
y]’,f directly from the network. Alternatively, if a vanilla supervised model is used, we interpret its output
probabilistically by selecting y,, with a prediction probability of Pr,(y,; 8,). This flexibility allows the
framework to adapt to different modeling approaches.

Figure 3.2 The figure shows two sample distribution Pr,, and Pr.. Minimizing the dissimilarity coeffi-
cient minimizes the cross-diversity term (c) and maxmimizes the self-diversity terms. This encourages
the samples obtained from the individual distributions in (b) to be spread out, while encouraging the
samples between the distributions (c) to be close to each other.

The dissimilarity coefficient objective (3.6) seeks to balance two competing forces as shown in fig-
ure 3.2. First, it maximizes the “self-diversity” of each distribution. This encourages samples drawn
from either Pr, or Pr, to spread out and explore their support thoroughly. Second, it minimizes the
“cross-diversity” between the distributions, ensuring paired samples from Pr;, and Pr, are drawn closer

together. In practice, this means the model is encouraged to generate a rich variety of outcomes within
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each distribution (avoiding mode collapse or overly narrow predictions) but also to align corresponding
samples across distributions, ensuring that they remain tightly coupled. By jointly optimizing these
terms, the objective both preserves internal variability and enforces cross-distribution agreement.

To prevent degenerate solutions, a task-specific, non-negative loss function is carefully chosen. This
loss is well-defined for all valid inputs and yields zero only when the model makes a perfect prediction
for the task, assigning a positive value otherwise. As a result, the model can compute a meaningful
diversity coefficient. Additionally, the conditional distribution is thoughtfully constructed by incorpo-
rating implicit or explicit priors about the task, guiding the model toward plausible outputs that reflect
domain-specific structure. This informed design prevents the distribution from collapsing into a delta
function and avoids degenerate scenarios where both the prediction and the conditional distribution
become overly deterministic.

In the following subsections, we derive stochastic unbiased estimators for both the self-diversity and

cross-diversity terms.

3.2.3.1 Cross-Diversity between the Prediction Net and the Conditional Net

Following equation (3.1), the diversity between the prediction and the conditional distribution can

be written as,
DIV (Prpa PI‘C) = EyPNPrp(y\x;Op) [EyCNPrc(y|x,h;06) [A(ypa YC)]i| . (37)

Rewriting the expectation with respect to the conditional distribution (the inner distribution) as expecta-
tion over the random variables z with distribution Pr(z) using the Law of the Unconscious Statistician
(LOTUS).

DIVa (Prpa PrC) - IE’yPNPrp (y]x;0p) |:EZNPI‘(Z) [A(YPv ylg)ﬂ . (3.8)

The expectation over the random variable z with distribution Pr(z) is approximated by taking K sam-

ples from Pr(z),

K
1
DIVA(Pry, Pre) = By pr (yixc,) { 3 Aty yh) } (3.9)
k=1

Finally the expectation with respect to the prediction distribution is computed as,

DIV (Pry, Prc) = ZZPrp v 0,) Ay, vE). (3.10)
(1)

When DISCO Nets [83] are employed to draw K samples from the prediction net, the expectation is

written as,

K K
1
DIVA(Pry, Pr,) = KQZ:M;A yE vE). (3.11)



3.2.3.2 Self-Diversity of Conditional Net

Following the approach outlined above and referencing equation (3.1), the diversity coefficient of the
conditional distribution is expressed as,

DIV (Prcv PTC) = IEyc~P1rc(yIX,h;Bc) [Eyngrc(y\x,h;BC) [A(YCa yf;)H (3.12)

Now, rewriting the two expectations with respect to the conditional distribution as the expectation over

the random variables z and z’ respectively, we obtain the above equation as,
DIVA(Pre, Pre) = By oprn) | Egroprm [A(YE, y’g’)]] . (3.13)

In order to approximate the expectation over the random variables z and z’, we use K samples from the
distribution Pr(z) as,

K
1
DIVa(Pre, Pr,) = Kzl K kzl Ay*, y™). (3.14)
K £k
On re-arranging the above equation, we get,
DIVa(Pr,, Pr,) = Z AyE, y*). (3.15)
k K'=1
2

3.2.3.3 Self-Diversity of Prediction Net

Analogous to previous two cases, and using equation (3.1), the diversity coefficient of the prediction

net can be expressed as,
DIVA(Prp, Pry) = Ey, pr,(y|x6,) [Ey’pwprp(yIX;Op) [Ayp, y/p)]} : (3.16)

When the prediction distribution is modeled using a vanilla supervised model with a probabilistic inter-

pretation of its output, the two expectations are computed as,

DIVA(Prp, Pry) = By pr,(y/[x:6,) [ZPrp y' p: 0 (YPay,p)}v
=> " Pry(yp 0 Prp(y 0O AY Y ,) (3.17)
Yp yp

When K samples are drawn from the prediction net using DISCO Nets [83] (like the conditional net

above), the expression is formulated as,

DIVA(Pry, Pr,) = RE-T) Z Ayh,yh (3.18)
k:k:’_l
k'#k
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3.2.4 Optimization

The prediction and conditional distributions are modeled using deep neural networks, which makes
our objective (3.6) well-suited for minimization via stochastic gradient descent. It is possible to jointly
optimize the parameters of both the networks as shown in algorithm 1. However, computing the gradi-
ents of both networks simultaneously can be computationally and memory intensive. To address this,
a more efficient coordinate descent strategy is employed to train the parameters of the two networks

iteratively.

Algorithm 1 Joint Optimization over prediction and conditional net 8,,, 6.,

Input: Data set VV and initial estimate 02, 02
fort =1...T epochs do
Sample mini-batch of b training example pairs
forn=1...bdo
Sample K random noise vectors zj,
Generate K candidate output from Pr.(a, x, z;) and Pr,(x, z;).
end for
Compute objective as given in equation (3.6) here.
Update parameters w via SGD with momentum
end for

The coordinate descent proceeds by iteratively fixing the parameters of the prediction net and learn-
ing the conditional net, followed by learning the prediction net for the fixed conditional net. The two
steps of the iterative algorithm are described below.

3.24.1 Optimization over Prediction Net

As the parameters 6. of the conditional nets are fixed, the learning objective (3.6) of the prediction

net results in a fully supervised training shown below,

N
6, = arg min Z DISCA(Prp(y|x;0,), Pre(yla, x;0.)),

O =1
U (3.19)
= argemln Z DIVA(Prp(y|x; 6,), Pre(yla,x;0.))—
Poi=1

W’DIVA(PT;D(Y|X§ 01:)7 Prp(}”x; Hp))'

Here DIV (Pr,(y|x; 0,), Pre(y|a, x; 6.)) is the cross-diversity term and DIV (Pry,(y|x; 6,), Prp(y[x; 6,))
is the self-diversity term (Section 3.2.3).

The prediction net takes an image as input along with the K predictions sampled from the conditional
net. These predictions are treated as pseudo ground-truth labels to compute the gradient of the prediction
net objective (3.19). Since the objective (3.19) is differentiable with respect to the parameters 6,,, the
prediction net is updated using stochastic gradient descent.
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When the prediction distribution is modeled using a vanilla supervised model with a probabilistic
interpretation of its output, the training process directly corresponds to supervised learning, guided by
the objective specified in Equation (3.19).

Alternatively, if the prediction distribution is modeled using DISCO Nets [83], the optimization is

performed as outlined in Algorithm 2.

Algorithm 2 Optimization over prediction net 6,

Input: Data set VV and initial estimate 02
fort =1...T epochs do
Sample mini-batch of b training example pairs
forn=1...bdo
Sample K random noise vectors z
Generate K candidate output from Pr.(a, x, z*; 8..) and Pr,(x,z"; 0,).
end for
Compute the objective as given in equation (3.19) here.
Update parameters 6,, via SGD with momentum
end for

k

3.2.4.2 Optimization over Conditional Net

As in the previous section, when the parameters ), of the prediction net are fixed, the learning

objective (3.6) for the conditional net reduces to a fully supervised training setup, as shown below,

N
0, = argemin Z DISCA(Prp(y|x;0,), Pre(yla, x;0.)),
Pooi=1

= (3.20)
= arg min Z DIVA(Pry(y|x; 6,), Prc(yla, x;0.))—

O =1
(1 - V)DIVA(PTc(y|a7X; 00)7P7"C(Y|aax; 00))

Here DIV (Prp(y|x;0)), Prc(yla, x; 6.)) is the cross-diversity term and DIV (Pr.(y|a, x; 6.), Pr.(y|a, x; 6.))
is the self-diversity term (Section 3.2.3).
The conditional net receives the image, weak annotations, and predictions from the prediction net as
input. These predictions serve as pseudo ground-truth labels for calculating the gradient of the condi-
tional net objective (3.20). With the objective function being differentiable with respect to the parame-
ters 6., the conditional net is optimized using stochastic gradient descent as shown in algorithm 3.

3.2.4.2.1 Optimization over Discrete Conditional Net When the conditional net operates in a dis-
crete output space, the optimization process requires careful handling. Unlike the continuous case,

the discrete nature of the conditional net necessitates approximations to compute gradients efficiently
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Algorithm 3 Optimization over conditional net 6,

Input: Data set WV and initial estimate 6°
fort=1...T epochs do
Sample mini-batch of b training example pairs
forn=1...bdo
Sample K random noise vectors z
Generate K candidate output from Pr(x, z*) and Pr.(a, x, z*)
end for
Compute the objective as given here in equation (3.20) here.
Update parameters 6. via SGD with momentum
end for

k

while preserving the essential properties of the learning objective. In the following, we describe the
optimization process for the conditional net when modeled using discrete DISCO Nets.

A non-differentiable training procedure The conditional net is modeled using a Discrete DISCO
Nets [84] (Section 3.1.3.1 which employs a sampling step from the scoring function S*(y.) (see Equa-
tion (3.5), where the parameters of the discrete DISCO Nets, now representing the conditional distribu-
tion, are denoted by 8. instead of @). This sampling step makes the objective function non-differentiable
with respect to the parameters 6., even though the scoring function S*(y.) itself is differentiable. How-
ever, as the prediction network is fixed, the above objective function reduces to the one used in Boucha-
court et al. [84] for fully supervised training. Therefore, adapting the optimization approach outlined by
Bouchacourt et al. [84], we address this problem by estimating the gradients of our objective function

using the temperature parameter € as,

Vo, DISCH (Pr,(6,),Pre(6.)) = +lim E(DIVAE(PQD7 Pr.) — vDIVA(Pr., Pr.)) (3.21)

e—0 €
where,
DIV (Pry, Pre) = Ey pry(0,) Eopmpi(n) [Vo.S* (Fa) — Vo.S" ()] (3.22)
DIV (Pre,Pre) = By, pe() B, mpr(e) [Vo.S* (33) — VoS (¥2)]] (3.23)
and,

Y = arg max Sk (yc)
yey

y. = argmaxS¥ (y.)

vey (3.24)

ya = argmax Sk(yc) + 6A(Yp7 yc)
yey

S’b = arg max Sk(yc) i GA(SIC? yé)
yey

In this thesis, we fix the temperature parameter € as € = +1.
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Intuition for the gradient computation: We now present an intuitive explanation of the com-
putation of gradient, as given in equation (3.21). For an input x and two noise samples zg, zx/, the
conditional net outputs two scores S*(y.) and S K (y¢), with the corresponding maximum scoring out-
puts y. and y’.. The model parameters 6, are updated via gradient descent in the negative direction of
Vo, DISCS (Pry(6,), Pre(6.)).

* The term DIV} (Pry, Pr.) updates the model parameters towards the maximum scoring predic-
tion . of the score S*(y.) while moving away from ¥, where ¥, is the sample corresponding
to the maximum loss augmented score S*(y.) £ €A(y,, ¥.) with respect to the fixed prediction
distribution samples y,,. This encourages the model to move away from the prediction, which
provides high loss with respect to the pseudo ground truth labels.

* The term yvDIV{ (Pr., Pr.) updates the model towards y; and away from the y.. Note the two
negative signs giving the update in the positive direction. Here yy is the sample corresponding to
the maximum loss augmented score S*(y.) 4 €A (., ¥%.) with respect to the other prediction y”,,

encouraging greater diversity between y. and y_..

Training algorithm for conditional net: Pseudo-code for training the conditional network for a
single sample from weakly supervised data is presented in algorithm 4 below. In algorithm 4, statements
1 to 3 describe the sampling process and computing the loss augmented prediction. We first sample K
different predictions y* corresponding to each noise vector zj, in statement 2. For the sampled prediction
y* we compute the maximum loss augmented score S*(y..) & €A(yp,¥c)- This is then used to find the
loss augmented prediction ¥, given in statement 3.

In order to compute the gradients of the self diversity of conditional distribution, we need to find
the maximum loss augmented prediction y;. Here, the loss is computed between a pair of K different
predictions of the conditional net that we have already obtained. This is shown by statements 4 to 9 in
algorithm 4.

For the purpose of optimizing the conditional net using gradient descent, we need to find the gradients
for the objective function of the conditional net defined in equation (3.20). The computation of the
unbiased approximate gradients for the individual terms in the objective function is shown in statement
10. We finally optimize the conditional net by the employing gradient descent step and updating the

model parameters by descending to the approximated gradients as shown in statement 11 of algorithm 4.
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Algorithm 4 Optimization over Discrete Conditional Net 0,

Input: Training input (x,a) € W, prediction net output y,,

Output: y!, ..., yX, sample K predictions from the model
1: fork =1to K do > Generate K candidate outputs
2: Sample noise vector z;, Generate output y*:

yf = arg max Sk(yc)

yey
3: Find loss-augmented prediction y* with respect to Yp:

y’; = arg maXSk(yc) + eA(yp, y’;)

yeY
4: end for
5: for k =1to K do > Compute loss-augmented predictions
6: for ¥’ =1to K,k # k do
7: Find loss-augmented prediction y’; K

~ k! NN
v, " = argmax S*(yc) £ eA(yE, y¢ )
yey
end for
9: end for
10: Compute unbiased approximate gradients:

K
| . i
DIV(Pry, Pro) = = > | Vo, 8" (¥a) = Vo, 5*(3.)] (3.25)
k=1
9 K
DIVA(Pre, Pre) = ey 3 [vgcs’f(yb) Ve, S* (yc)] (3.26)
k,k'=1
A

11: Update model parameters using gradient descent:

01! = 0! — Vg, DISCA(Pr,(6,), Pr.(6.))
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Chapter 4

Weakly Supervised Human Pose Estimation

4.1 Introduction

Current approaches to learning human pose estimation from still images rely on collecting fully anno-
tated datasets, where each training sample includes an image of a person along with their ground-truth
joint locations. However, obtaining such detailed annotations is both challenging and costly, making
this approach impractical at scale. To overcome the limitations of fully supervised learning, we pro-
pose leveraging a diverse dataset. In this setup, a subset of the images is labeled with expensive pose
annotations, while the remaining images are annotated with inexpensive action labels.

This type of dataset offers two key advantages. First, it can be collected at a significantly lower cost.
For instance, performing a simple keyword search, such as ‘running,” on an image search engine yields
hundreds of thousands of freely available images that can be easily curated with the help of human
annotators. Second, action labels provide valuable contextual information about poses. For example,
the action running’ excludes poses where a person is lying down or upside down, effectively narrowing
the range of plausible poses (Figure 4.1).

We assume that the distribution of images labeled with different types of annotations is the same
(a necessary assumption for learning) and that the annotations themselves are noise-free. Under these
assumptions, we argue that action information can facilitate learning pose estimation. Note that earlier
works have exploited the relationship between action and pose for action recognition. However, our
problem is significantly more challenging due to the high uncertainty in the pose associated with a given
action (Figure 4.1). To model this uncertainty, we propose using a probabilistic learning formulation.
A typical probabilistic formulation would learn a joint distribution of the pose and the action given an
image. To make a prediction on a test sample, where action information is not known, it would sum
over all possible actions to marginalize their effects. In other words, it would use one set of parameters
for two distinct tasks: (i) modeling the uncertainty in the pose for each action; and (ii) predicting the
pose given an image.

As our goal is to make an accurate pose prediction, we argue that such an approach would waste the
modeling capability of a distribution in representing pose uncertainty in the presence of action informa-

tion. In other words, the parameters of the distribution will be tuned to perform well in the presence
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Figure 4.1 The figure displays images of action classes from the MPII Human Pose dataset. It illustrates
that human poses within a single action class can vary significantly. Additionally, the figure highlights
the high intra-class variance, as seen in the swimming action label, where swimmers are depicted in a
variety of swimming poses.

of action information, which is not available during testing. Instead, we use two distinct distributions
for the two tasks: (i) a conditional distribution of the pose given the image and the action; and (ii) a
prediction distribution of the pose given the image.

We jointly estimate the parameters of the two distributions by minimizing their dissimilarity coeffi-
cient [82], which uses a task-specific loss function to measure the distance between the samples from
the two distributions. By transferring the information from the conditional distribution to the prediction
distribution, we learn to estimate the pose of a human using a diverse dataset. Figure 4.2 illustrates the
importance of using a probabilistic model. Specifically, the figure depicts the average entropy of each
joint predicted by our model on test images. We observe that the most articulate joints, such as wrists

and ankles, have the highest entropy, which a non-probabilistic network does not explicitly model.

Figure 4.2 The average entropy of joints in test images is visualized over a stick figure. The radius of a
circle around a joint is proportional to the joint’s entropy.
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Although our approach can be applied to any parametric family of distributions, in this work, we
focus on state-of-the-art deep probabilistic networks. Specifically, we model both the conditional and
prediction distributions using a DISCO Net [83], which allows us to efficiently sample from the two
distributions. As we will show, efficient sampling is sufficient to make both training and testing compu-
tationally feasible.

We demonstrate the efficacy of our approach using the publicly available MPII Human Pose [18] and
JHMDB [85] data sets. We discard the pose information of a portion of the training samples but retain
the action information for all the samples to generate a diverse dataset. We provide a thorough com-
parison of our probabilistic approach with two commonly used baselines. The first is a fully supervised
approach, which discards the weakly supervised samples labeled using only the action information. The
second is a pointwise model that uses self-paced learning [86], first learning from easy samples and
then gradually increasing the difficulty of the training samples. We show that, by explicitly modeling
the uncertainty for the pose of diverse supervised samples, our approach significantly outperforms both

baselines under various experimental settings.

4.2 Related Work

With the introduction of “DeepPose” by Toshev et al. [87], research on human pose estimation shifted
from classic approaches based on pictorial structures [88-96] to deep networks. Subsequent methods
include [97], which simultaneously captures features at a variety of scales using heatmaps, and [98],
which employs a hierarchical model to capture the relationships between joints. A popular approach by
Newell et al. [4] uses a conv-deconv architecture and residual models to efficiently generate heatmaps
without requiring hierarchical processing. This approach has been further extended by incorporating
visual attention [99] and feature pyramids [100]. However, these methods rely on the network’s capac-
ity to capture highly articulated human poses and handle occlusions, without explicitly modeling the
uncertainty of the pose.

Modeling the uncertainty for the human pose becomes crucial in a diverse data setting, where some
training samples only provide action information. While pose has often been used to predict action [101—
104], the use of action for pose estimation has primarily been studied for 3D human pose [105] or videos
with available temporal information [106-109]. To the best of our knowledge, our work is the first to
exploit action information for 2D pose estimation in still images.

While pose estimation using action information has received limited attention, the general problem
of diverse data learning has a rich history in machine learning and computer vision. Most traditional
approaches relied on simple parametric structured models such as conditional random fields or struc-
tured support vector machines [50-52, 110-112]. However, as traditional structured prediction models
have been replaced by deep learning, these formulations must be adapted for neural network parameter
estimation. Indeed, our work can be viewed as a natural generalization of [51] for deep probabilistic

models that admit efficient sampling mechanisms.
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The deep learning community also realizes the importance of using diverse datasets to scale up data-
hungry neural network-based approaches. This has led to recent research in deep multiple instance
learning [68, 113, 114], as well as expectation-maximization-based methods [69, 70]. However, most
deep diverse data learning approaches have been designed for specific tasks, such as semantic segmen-
tation [71, 115]. It is not clear how these methods can be adapted to learn human poses from action
labels. In contrast, our general formulation (presented in the next section) can be adapted to any task
by defining a task-specific loss function. While we are primarily interested in pose estimation, our

formulation may be of interest to the broader audience working on diverse data deep learning.

4.3 Problem Formulation

Our approach uses the recently proposed deep probabilistic network, DISCO Nets [83]. The DISCO
Nets framework allows us to adapt a pointwise network (that is, a network that provides a single point-
wise prediction) to a probabilistic one by introducing a noise filter in the pointwise network (Sec-
tion 3.1.3).

Figure 4.3 For a single input image x and three different noise samples {z1,z2,2z3} (represented as
red, green, blue matrix respectively), DISCO Nets produces three different candidate poses {y1,y2,¥3}.
Here each block is a residual layer and two hourglass shaped blocks represent the hourglass module
proposed by Newell et al. [4]. Best viewed in color.

As a concrete example, consider the modified stacked hourglass network in Figure 4.3, which can be
used for human pose estimation. The colored filters in the middle of the network represent the noise that
is sampled from a uniform distribution. Each value of the noise filter results in a different pose estimate
for the same image, thereby enabling us to generate samples from the underlying distribution encoded
by the network parameters. Note that obtaining a single sample is as efficient as a forward pass through
the network. By placing the filters sufficiently far away from the output layer of the network, we can
learn a highly non-linear mapping from the uniform distribution (used to generate the noise filter) to the

output distribution (used to generate the pose estimates).
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In [83], the parameters of the DISCO Nets were learned by minimizing the dissimilarity of the net-
work distribution and the true distribution (as specified by fully supervised training samples). However,

we show how the DISCO Nets framework can be extended to enable diverse data learning.

4.3.1 Model

Due to the uncertainty inherent in the task of pose estimation (occlusion of joints, articulation of
human body) as well as the uncertainty introduced by the use of a diverse data set during training, we
advocate the use of a probabilistic formulation. To this end, we define two distributions. The first is the
prediction distribution that models the probability of a pose y given an image x. As the name suggests,
this distribution is used to make a prediction during test time. In this work, we model the prediction
distribution Pr,(y|x; 8,) as a DISCO Nets, where ), are the parameters of the network.

In addition to the prediction distribution, we also model a conditional distribution of the pose given
the image and the action label. As the conditional distribution contains additional information, it can be
expected to provide better pose estimates. We will use this property during training to learn an accurate
prediction distribution using the conditional distribution. As will be seen shortly, the conditional distri-
bution will not be used during testing. Similar to the prediction distribution, the conditional distribution
Pr.(y|x,a; 6.) is modeled using a DISCO Nets, with parameters 8.. Note that, while we do not have
access to the partition function of the two aforementioned distributions, the use of a DISCO Net ensures
that we can efficiently sample from them. This property will be exploited to make both the testing and

the training computationally feasible.

4.3.2 Prediction

We assume a task-specific loss function A(-, -) that measures the difference between two putative
poses of an image. Given an image x containing a human, we would like to estimate the pose y of the
human such that it minimizes the risk of prediction (as measured by the loss function A). Since the
ground-truth pose is unknown, we use the principle of maximum expected utility (MEU) [116]. The
MEU criterion minimizes the expected loss using a set of samples ) = {y*, k =1,..., K } obtained
from the distribution Pr,(y|x; 0p).

Formally, given an image X, we provide a pointwise prediction of the pose in two steps. First, we
estimate K pose samples using K different noise filters, each of which is sampled from a uniform

distribution. Second, we use the MEU criterion to obtain the prediction as,

K

YA(x;0,) = argmin Y~ A(y*, y"). (4.1)
ke[1,K] k=1

As can be seen, the above criterion can be easily applied for any loss function. For human pose estima-
tion, we adopt the commonly used loss function that measures the mean squared error between the belief

maps of two poses over all the joints [4,97,98]. The belief map by (j) of a joint j is created by defining
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a 2D Gaussian whose mean is at the estimated location of the joint, and whose standard deviation is a

fixed constant.

4.3.3 Diverse Data Set

In order to learn the parameters 6, of the prediction distribution, we require a training data set.
Current methods rely on a fully supervised setting, where each training sample is labeled with its ground-
truth pose. In order to avoid the cost of such detailed annotations, we advocate the collection of a diverse
data set, with a small number of fully supervised samples and a large number of weakly supervised
samples. The presence of fully supervised samples helps disambiguate the problem of pose estimation

from the problem of action classification.

Formally, we denote our training data set as D = {W, S}, where W = {(x;,a;),i = 1... N} isthe
weakly annotated data set, and S = {(x;,a;,h;),j7 = 1... M} is the strongly annotated data set and
M < N. Here x; refers to the ¢-th training image and a; denotes its action. We denote the underlying
pose of the image x; as the output variable y;. Note that we do not assume a single underlying pose.

Instead, we model the distribution over all putative poses given the image and action.

4.3.4 Learning Objective

Given the diverse data set D, our goal is to learn the parameters 6,, such that it provides an accurate
pose estimate y A (x; 8),) (specified in equation (4.1)) for a test image x. A typical learning objective for
this purpose would estimate the joint distribution Pr,(y, a|x; 8,) using expectation-maximization or its
variants [117]. Given an image x, the pose would then be obtained by marginalizing over all actions
a. However, as discussed in Section 3.2, this approach needlessly places the burden of accurately
representing the uncertainty of the pose and the action of an image on a single distribution. Since the
action information would not be provided during testing, such an approach may fail to fully utilize the

modeling capacity of the distribution parameters to obtain the best pose.

Inspired by the work of Kumar et al. [51], we design a joint learning objective that minimizes the
dissimilarity coefficient between the prediction distribution and the conditional distribution (defined in

Section 3.2.3). Formally, our learning objective is defined in Equation (3.6), which is shown below:

N
0,,0; = areg I;linZDISCA(PI‘p(y‘X; 0,), Pr.(yla,x;60.)). 4.2)
pbe =1

To ensure computational efficiency, we employ the stochastic unbiased estimation method for self-

diversities and cross-diversity as described in Section 3.2.3. Following equations (3.11, 3.18, 3.17), the
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objective (equation (3.6)) can be computed as,

1 K K ) 1 K , K ,
ﬁzzﬁ(y'j,fi)—m@ > ALY 1= Y Aky)). @3

k,k'=1 kK =1
k' #k k' #k
Here, A is tuned for human pose estimation and computes the mean squared error between the belief

maps of two poses over all joints.

4.3.5 Optimization

As detailed in Section 3.2.4, both the prediction and conditional distributions are modeled using
DISCO Nets, making them well-suited for optimization via stochastic gradient descent. In order to
make the most use of the diverse nature of the data set, as well as the learning objective, we estimate the
parameters of the two networks in three stages. First, we use supervised training for the two networks
using the small amount of the ground truth pose data. Second, we perform iterative training of the two
networks, that is, we update one network while keeping the other fixed. Third, we jointly optimization
of both the networks together. At each stage, we use stochastic gradient descent in a similar manner
to [83]. Joint training of the two network is expensive in terms of memory and time. However, by first
training the two networks using strong supervision and then using iterative optimization strategy, we
significantly reduce the number of iterations required in the third stage of the optimization. The details

of each step is discussed in Section 3.2.4.

4.3.5.1 Visualization of the Learning Process

We visualize the predictions of the two networks during the iterative training process to understand
how information is transferred from the conditional network to the prediction network. Figure 4.4
provides an overview of this process using a representative example, while Figures 4.5, 4.6, and 4.7
delve into specific cases categorized as easy, moderate, and difficult, respectively. Each visualization
shows 100 superimposed pose estimates from both the prediction and conditional networks. The opacity
and spread of the lines represent the agreement among the samples: thin and opaque lines indicate low
uncertainty, while spread-out and less opaque lines indicate high uncertainty.

To represent uncertainty levels, bounding boxes are drawn around the images:

* Green bounding box: Indicates low uncertainty, where the expected loss is less than 3.

* Blue bounding box: Indicates high uncertainty, where the expected loss is greater than 3.
4.3.5.1.1 Representative Example Figure 4.4 illustrates the iterative learning process using a com-
mon action, such as riding a bike. Initially, the prediction network (Pr,) and the conditional network

(Pr.) have different levels of uncertainty: the conditional network is more confident, while the pre-

diction network is less so. Over the iterations, the predictions from both networks align more closely,
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Figure 4.4 Example of superimposed pose predictions by DI1SCO Nets illustrating the uncertainty in the
pose across training iterations. The blue box around the images represent a high diversity coefficient
value, and the green box around them represents low diversity coefficient value. Row (a) represents
outputs from the prediction network and row (b) represents outputs from the conditional network. The
first column shows the initial prediction of the networks; columns 2 through 4 shows prediction of the
networks at second, fifth and final iteration respectively. The images show a common action of riding a
bike where the conditional network performs well from the beginning of the optimization procedure and
transfers its knowledge to the prediction network. Best viewed in color.

reflecting the successful transfer of information. This example serves as a general depiction of how the

two networks evolve during training, setting the stage for the specific cases discussed below.

4.3.5.1.2 Easy Cases Figure 4.5 represents easy cases, where both the prediction network (Pry,)
and the conditional network (Prg) initially have low uncertainty for the predicted pose. These exam-
ples often involve clear, unoccluded images of individuals in standard poses for common actions, such
as walking or standing. The fully annotated training dataset is typically sufficient for the prediction
network to achieve high confidence in these cases, requiring little benefit from weakly supervised train-
ing. However, even in these cases, minor improvements in pose estimation can be observed over the

iterations of the optimization algorithm.

4.3.5.1.3 Moderate Cases Figure 4.6 shows moderate cases, such as individuals performing actions
like exercising, riding a bike, or running. These examples may feature occluded joints or variations
of standard poses. Initially, the prediction network (Pr,) has high uncertainty, whereas the conditional
network (Pr.) exhibits low uncertainty and high confidence in the predicted pose. Over the iterations,

the prediction network benefits significantly as information from the conditional network is successfully
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Figure 4.5 Example of superimposed pose predictions by DISCO Nets illustrating the uncertainty in
the pose across training iterations for an easy case. The blue box around the images represent a high
diversity coefficient value, and the green box around them represents low diversity coefficient value.
Columns 1 and 3 are outputs of the prediction network and columns 2 and 4 are outputs of conditional
network. Row 1 represents initial prediction of networks; rows 2 and 3 represents prediction of networks
in second and fifth iteration respectively and last row represents prediction of networks when they have
converged. The images in the first and second column show an easy example of a person standing
straight with his one hand held out and the third and fourth columns show a person standing in relaxed
upright pose. where both the conditional network and the prediction network performs well from the
beginning of the optimization procedure. For each example, the first column shows estimated pose from
prediction network and the second column shows estimated pose from conditional network. Best viewed
in color.

transferred to it. This results in a notable improvement in the accuracy and confidence of the predictions

for these cases. The majority of the dataset falls into this category.

4.3.5.1.4 Difficult Cases The final example, shown in Figure 4.7, illustrates challenging cases, such

as rare actions like underwater swimming or a person kicking a ball in mid-air. Due to the rarity of
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Figure 4.6 Example of superimposed pose predictions by DI1SCO Nets illustrating the uncertainty in the
pose across training iterations for examples with moderate difficulty. The blue box around the images
represent a high diversity coefficient value, and the green box around them represents low diversity
coefficient value. Columns 1 and 3 are outputs of the prediction network and columns 2 and 4 are
outputs of conditional network. Row 1 represents initial prediction of networks; rows 2 and 3 represents
prediction of networks in second and fifth iteration respectively and last row represents prediction of
networks when they have converged. The images in the first and second column show a common action
of a person exercising and the third and fourth column shows a person riding a skate board. In these
cases, the conditional network performs well from the beginning of the optimization procedure. At
convergence, both the prediction network provides accurate pose estimates for such moderately difficult
images by transferring information from conditional network. For each example, the first column shows
estimated pose from prediction network and the second column shows estimated pose from conditional
network. Best viewed in color.

such poses in the fully annotated training set, both the prediction and conditional networks (Pr, and
Pr.) exhibit high uncertainty in their initial predictions. However, through iterative optimization and by
leveraging the information gained from simpler examples in the weakly supervised dataset, the accuracy

of the predicted poses for these challenging cases improves significantly over time.
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Figure 4.7 Example of superimposed pose predictions by DISCO Nets illustrating the uncertainty in
the pose across training iterations for difficult examples. The blue box around the images represent
a high diversity coefficient value, and the green box around them represents low diversity coefficient
value. Columns 1 and 3 are outputs of the prediction network and columns 2 and 4 are outputs of
conditional network. Row 1 represents initial prediction of networks; rows 2 and 3 represents prediction
of networks in second and fifth iteration respectively and last row represents prediction of networks when
they have converged. The images in the first and second column show a rare action of person swimming
underwater, and the third and fourth columns show a person in an unusual pose, where he is kicking the
ball in air. Such rarity in pose leads to high uncertainty in both the networks initially. At convergence,
both the networks provided accurate pose estimates for the difficult image by learning from the easier
images. For each example, the first column shows estimated pose from prediction network and the
second column shows estimated pose from conditional network. Best viewed in color.

4.3.5.1.5 Summary of Observations Throughout the iterative learning process, we observe the fol-

lowing trends:
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1. Representative cases: The representative example shows the general behavior of the two net-
works, where the prediction network starts with high uncertainty but aligns more closely with the

conditional network as training progresses.

2. Easy cases: The prediction network starts with high confidence and only marginally benefits from

weakly supervised training.

3. Moderate cases: The prediction network starts with high uncertainty but improves significantly

as information from the conditional network is transferred to it.

4. Difficult cases: Both networks initially exhibit high uncertainty, but the weakly supervised dataset

enables gradual improvement through information sharing from simpler examples.

These visualizations comprehensively illustrate the learning process for different levels of difficulty

in the dataset.

4.4 Experiments

4.4.1 Data set

We use the MPII Human pose data set [18], which consists of 17.4k images with publicly available
action and ground-truth pose annotations. We split the images into {70, 15, 15}% training, validation
and test sets, which corresponds to 12,156 images in the training set and 2605 images each in the
testing and the validation set. In order to obtain a diverse data set, we discard the pose information for
a random subset of training examples, while retaining action labels for all samples. This results in (i) a
fully annotated training set, which contains both the ground truth pose annotations and the action labels;
and (ii) a weakly annotated training set, which only contains action labels.

To obtain the tasks of varying levels of difficulty, we choose three different data splits, {25 — 75, 50 —
50, 75—25}%, where we randomly discard 75%, 50%, and 25% of the pose annotations from the training
images respectively. We note here that for each split, we augment our training set by rotating the images
with an angle (4-/—30°) and by horizontal flipping the original image.

We additionally use the JHMDB data set [85]. The JHMDB data set, which consists of 33183 frames
from 21 action class, have 13 annotated joint locations. We split the frames from each action class into
{70,15,15}% training, validation and test sets, which corresponds to 22883 frames in the training set,
and 4150 frames in the validation and the test set. We present our results on 50 — 50 split. To create a
diverse data set with 50 — 50 split, we randomly drop pose annotations from 50% from the frames of

the training set.

4.4.2 Implementation and Experimental Setup

To implement our probabilistic DISCO network, shown in Figure 4.3, we adopt the stacked hourglass

network [4], a widely used architecture for human pose estimation. The stacked hourglass network
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consists of 8 hourglass modules. For the prediction network Pr,,, a noise filter of size 64 x 64 is added
to the output of the penultimate hourglass module, which itself consists of 256 64 x 64 filters. The 257
channels (including the noise channel) are convolved with a 1 x 1 filter to bring the number of channels
back to 256, followed by a final hourglass module, as shown in Figure 4.3. This architecture ensures
that all parameters remain differentiable and can be trained via backpropagation.

The conditional network Pr. is modeled similarly to the prediction network, except that it includes
a different output branches, one for each possible action class. These branches are stacked on top of
the penultimate hourglass module. Each branch has its own noise filter followed by a final hourglass
module. During forward and backward propagation, only the branch corresponding to the current action
class is active, while outputs from other branches are masked. This setup ensures efficient processing
without unnecessary computations.

When drawing K samples from the modified stacked hourglass architecture for a single input image,
we reuse the output of the penultimate layer of the 8-stacked hourglass network. Only the final hourglass
module is recomputed K times to generate K samples, significantly reducing runtime complexity. For
K = 100, a single forward pass of the probabilistic network takes 114 ms compared to 68 ms for the
vanilla stacked hourglass network on an NVIDIA GTX 1080Ti GPU.

4.4.2.1 Network Initialization and Training

The prediction network Pr), is initialized by training on a small, fully annotated training dataset.
The conditional network Pr, is initialized by fine-tuning the weights of the prediction network using
action-specific samples from the fully annotated training set. After initialization, we optimize the two
networks first using an iterative optimization procedure, followed by joint optimization as described in
Section 3.2.3.

We employ data augmentation to expand the training dataset by 4 x, including weakly annotated and
fully annotated data. For the fully supervised (FS) network, additional random crops are performed to
maintain an equal number of training samples across all networks. The probabilistic networks Pr, and
Pr. are trained with ' = 100 samples. However, previous studies [83] indicate that results remain

robust even with X = 2 for different tasks.

4.4.2.2 Optimization and Early Stopping

All networks are trained for 100 epochs, with early stopping based on validation accuracy to prevent
overfitting. The training is performed using stochastic gradient descent (SGD) with a learning rate
n = 0.025 and momentum m = 0.9. For weight decay regularization, the parameter C' is cross-
validated in the range [0.1,0.01,0.001, 0.0001], with optimal values of 0.001 for FS, 0.0001 for PW,
and 0.01 for the probabilistic networks. We save the network parameters corresponding to the best

validation accuracy and report results on the held-out test set.
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4.4.3 Methods

We compare our proposed probabilistic method, learned with diverse data, with two baselines: (i) a
fully supervised human pose estimation network, the stacked hourglass network [4], which we refer to
as FS Net; and (ii) a non-probabilistic pointwise network trained with diverse data, which uses the same
architecture as shown in figure 4.3 but provides a single prediction. We refer this pointwise network as
PW Net. The first baseline helps us to compare the performance of a fully supervised network with a
network trained on the diverse collection of data, and the second baseline demonstrates the benefit of
our probabilistic network when compared to a non probabilistic pointwise network.

We train FS net on the fully annotated data set using stochastic gradient descent, as discussed in [4].

The PW net is trained using diverse data, making use of the action annotations.

4.4.3.1 Baseline Comparisons and Regularization

To compare with baseline methods, we train non-probabilistic pointwise networks (PW) that discard
the last two self-diversity terms from the probabilistic objective function and compute predictions using
the principle of maximum expected utility (MEU). The prediction and conditional pointwise networks
(PW,, and PW,,) are initialized similarly to their probabilistic counterparts and fine-tuned using action-
specific samples. During training, self-paced learning is employed for PW networks, where backpropa-
gation is applied only if the loss is below a threshold ¢. This ensures the network learns from confident
predictions while avoiding erroneous or uncertain samples.

In contrast, the probabilistic network Pr,, does not require such a threshold. The diversity coefficient
in the objective function inherently ensures that the network learns only from confident predictions,

reducing the need for additional parameters compared to the baseline.

4.4.4 Results
4.4.4.1 Results on MPII Human Pose Data Set

We evaluate the three trained networks, FS, PW and Pr;,, by computing their accuracy on the held
out test set. We use the normalized “Probability of Correct Keypoint” (PCKh) metric [95] to report our
results. Table 4.1 shows the performance of the three networks when trained on varying splits of the
training set.

Here, we observe that, for all the data splits, our proposed probabilistic network Proby, outperforms
the other baseline networks FS and PW. This superior performance is seen consistently across predic-
tions of all joints as well as on the overall pose prediction.

Performance of the three networks, FS, PW and Pr,, increases with the increase in level of supervi-
sion. In the more challenging 25 — 75 split, there are far fewer fully supervised examples present for
each action category which results in PW and Pr), to learn a poor initial estimate of action specific pose
from diverse data. This leads to overall poor performance when compared to 50 — 50 or 75 — 25 split

case, where we have more supervised data.
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Table 4.1 Results on MPIl Human Pose (PCKh@0.5), where FS is trained on varying percentages of
fully annotated data and PW and Pry, are trained on varying splits of fully annotated and weakly anno-
tated training data. Here FS and PW are the fully supervised and the pointwise networks respectively,
and Pr,, (iterative) and Pr), (joint) is our proposed probabilistic network trained with iterative optimiza-
tion and joint optimization respectively. The supervised subset is the fully supervised stacked hourglass
net [4] trained with all the available labels and defines the upper bound on the total accuracy that can
be achieved through this architecture.
Method Split | Head Sho. Elb. Wri.  Hip Knee Ank. | Total
Supervised Subset | 100% | 98.16 96.22 91.23 87.08 90.11 87.39 83.55 | 90.92
25% | 59.17 4698 30.00 21.33 3632 20.05 23.93 | 37.54
FS 50% 90.18 80.60 64.29 5243 6744 5541 51.30 | 67.88
75% | 94.61 90.56 81.28 74.15 81.86 7320 67.19 | 80.88
25-75 | 73.77 55.69 3721 2532 4324 28.01 30.82 | 45.16
PW 50-50 | 92.97 83.56 71.08 59.18 72.56 60.49 57.27 | 73.11
75-25 | 9546 93.50 86.47 81.05 8558 8098 76.81 | 85.89
25-75 | 7821 60.98 42.01 28.75 4237 29.07 33.54 | 48.12
Pr), (iterative) 50-50 | 9342 8691 75.03 66.56 77.22 6738 60.96 | 76.43
75-25 | 96.28 94.53 88.36 83.31 87.54 8245 79.48 | 88.16
25-75 | 79.54 62.87 43.38 29.38 43.38 3091 34.86 | 49.41
Pr), (joint) 50-50 | 94.07 8832 7593 67.53 7820 67.80 61.49 | 78.01
75-25 | 97.45 95.87 90.21 86.09 89.42 86.26 8292 | 90.21

Moreover, both the methods trained using diverse data, PW and Pr,, show a significant gain in
accuracies when compared to the fully supervised network, FS. This empirically shows us that the
action information present in the weakly annotated set is helpful for predicting pose.

As our proposed probabilistic network Pr;, performs better than the pointwise network PW, we see
the significance of modeling uncertainty over pose. Though the proposed probabilistic network only
marginally improves the prediction for joints with low uncertainty, like the head, shoulder and hips, the
difference in the accuracies of the two networks is due to better performance of the probabilistic network
Pr, on difficult joints like wrists, elbows, knees and ankles. We see that the Pr;,, network provides a
significant improvement of up to 5% improvement in accuracies over the PW Net on joints with high
uncertainty (wrists, elbows, ankles and knees).

Joint training of the two set of networks improves our prediction by around 1.5%. We also note that,
while the supervised subset, which is the fully supervised stacked hourglass network [4] trained using all
available labels in the training set, achieves 90.9% [4], our probabilistic network provides comparable
results when trained only on 75% pose annotations and 25% action annotations. Note that the supervised
subset defines the upper bound on accuracy that can be achieved through this architecture.

We argue that the relative position of joints like head, shoulder and hip remains largely in similar spa-
tial location with respect to each other across various actions and therefore have low entropy, whereas,
joints like wrists, elbows, knees and ankles not only show huge variations in their relative spatial lo-
cation across various action categories but also within same action category, resulting in large entropy.

Therefore, even though pointwise network PW does a good job of estimating pose locations for joints
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with low uncertainty, it fails to capture the high inter-class and intra-class variability of joints with high

uncertainty. On the other hand, Pry, explicitly models uncertainty over joint locations as can be seen in
figure 4.2.

The detailed PcKh graphs on MPII data set by training an 8-stack hourglass network on various
setting described in the paper are presented in figure 4.8.
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Figure 4.8 Total PcKh comparison on MPII when trained on (a) 25 — 75 split, (b) 50 — 50 split; and (c)
75 — 25 split.

In the figure, we can see that we consistently outperform the baseline FS and PW networks across
all normalized distances. The networks trained on diverse data set (the PW and the Pr, network) per-
forms significantly better on lower normalized scores than the FS net which does not utilize the action
annotations when there are only a few strong pose annotations available. This shows the utility of using
action annotations when pose annotations are missing. The importance of using the probabilistic frame-
work can be seen for lower normalized distance for all three splits, where the Pry, network effectively
captures the uncertainty present in the data set. We observe that as the number of supervised samples in
our diverse data set increase, the accuracy of all the networks improves for smaller normalized distance.

The joint training of the Pry, network also improves the results over the iterative optimization of Pry,
network.

4.4.4.2 Results on JHMDB data set

The result for training the FS, PW and Pr), networks for the 50 — 50 split on the JHMDB data set are
summarized in table 4.2.

Table 4.2 Results on JHMDB data set (PCKh@0.5), where FS is trained using 50% percentage of fully
annotated data and PW and Pr), are trained on 50 — 50 split of fully annotated and weakly annotated
training data. Here FS and PW are the fully supervised and the pointwise networks respectively, and
Pr, (iterative) and Pr), (joint) is our proposed probabilistic network trained with block coordinate
optimization and joint optimization respectively.
Method FS PW | Pr, (iter) | Pr, (joint)
Total Accuracy | 80.01 | 85.77 89.90 91.25
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We observe that the accuracies of the three networks FS, PW and Pr;,) holds similar trends as we
had seen for the MPII data set.

4.4.5 Additional Results

To prove the generality of our method, we provide additional results using a different architecture,
as proposed by Belagiannis et al. [118]. The authors pose the problem of estimating human poses
as regression and propose to minimize a novel Tukey’s biweight function as loss function for their
ConvNet. They empirically show that their method outperforms the simple L2 loss. The point-wise
architecture, consisting of five convolutional layers and two fully connected layers is modified to a
Disco Nets as shown in the figure 4.9 below. A 1024 dimensional noise vector, sampled from a uniform

distribution, is appended to the flattened CNN features, before applying fully connected layers.

Figure 4.9 Modified architecture, as proposed by Belagiannis et al. [118]. The figure shows the sam-
pling process of D1scoO Net. The block CNN consists of 5 convolution layers. The middle block is the
flattened feature vector obtained after convolution. The block FC consists of two fully connected layers.

We evaluate the performance of the FS, PW and our proposed probabilistic network Pr;,, on 50 — 50
split of two data sets, namely (i) MPII Human Pose data set [18], and (ii) JHMDB data set [85]. The
MPII and the JHMDB data set is split exactly as it was done for the stacked hourglass network. The
results are summarized in Table 4.3.

Table 4.3 Results on MPII Human Pose data set and JHMDB data set (PCKh@0.5), where FS is trained
using 50% percentage of fully annotated data and PW and Pr,, are trained on 50 — 50 split of fully an-
notated and weakly annotated training data. Here FS and PW are the fully supervised and the pointwise
networks respectively, and Pr,, (iterative) and Pr,, (joint) is our proposed probabilistic network trained
with coordinate optimization and joint optimization respectively.

Method MPII | JHMDB
FS 41.89 | 54.31
PwW 54.37 | 66.19

Pr, (iterative) | 56.09 | 71.02
Pr,, (joint) 57.28 | 72.61

We observe that the results shown in Table 4.3 on both the data sets are consistent with our observa-

tions on the stacked hourglass network. Networks PW and Pr,, trained on the diverse data, outperforms
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the FS Net, which is trained only using the fully supervised annotations. This demonstrates the advan-
tage of using diverse learning over a fully supervised method. Moreover, our proposed probabilistic net
Pr,, outperforms the pointwise network PW, this signifies the importance of modeling uncertainty over
pose. We also note that performing joint optimization, after iterative optimization step, further increases
our accuracy by 1.2% on MPII Human Pose data set and by 1.4% on JHMDB data set.

4.5 Discussion

We presented a novel framework to learn human pose using diverse data set. Our framework uses
two separate distributions: (i) a conditional distribution for modeling uncertainty over pose given the
image and the action during training time; and (ii) a prediction distribution to provide pose estimates
for a given image. We model the two aforementioned distributions using a deep probabilistic network.
We learn these separate yet complimentary distributions by minimizing a dissimilarity coefficient based
learning objective. Empirically, we show that: (i) action serves as an important cue for predicting human

pose; and (ii) modeling uncertainty over pose is essential for its accurate prediction.
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Chapter 5

Weakly Supervised Object Detection

5.1 Introduction

Object detection requires us to localize all the instances of an object category of interest in a given
image. In recent years, significant advances in speed and accuracy have been achieved by detection
frameworks based on Convolutional Neural Networks (CNNs) [3, 10, 119-123]. Most of the exist-
ing methods require a strongly supervised data set, where each image is labeled with the ground-truth
bounding boxes of all the object instances. Given the high cost of obtaining such detailed annotations,
researchers have explored the weakly supervised object detection (WSOD) problem [32,124-135]. The
goal of Weakly Supervised Object Detection (WSOD) is to learn an accurate detector using training
samples that are annotated with more cost-effective labels, such as image-level, count, point, and scrib-
ble annotations. Image-level annotations can be as simple as object category labels that indicate the
presence of an object, or they can include richer information like per-class object counts, which offer
slightly more detailed supervision. Additionally, point and scribble annotations provide a more refined
level of guidance by indicating specific object locations (points) or rough object boundaries (scribbles).
Although these annotations come at a marginally higher cost than image-level labels, as we shall see,
they significantly improve the model’s ability to localize objects more accurately during training.

Given the wide availability of such cheaper-to-obtain labels, WSOD offers a cost-effective and highly
scalable learning paradigm. However, this comes at the cost of introducing uncertainty in the location of
the object instances during training. For example, consider the task of detecting a car. Given a training
image annotated with only the presence of a car, we still face the challenge of identifying the precise
bounding box for the car. This challenge is somewhat mitigated when additional annotations, such as
object counts, points, or scribbles, are available. Object count annotations provide information on the
number of instances present, reducing ambiguity about the number of objects to detect. Point annota-
tions, by marking specific locations within the object, help in narrowing down the potential area where
the object is located. Scribble annotations, which roughly outline the object, offer even more spatial
guidance, making it easier to determine the approximate shape and boundary of the object. Despite
these enhancements, WSOD must still contend with the inherent uncertainty introduced by the lack of

full supervision as the extent of an object is not known.
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In order to effectively model uncertainty in weakly supervised learning, Kumar et al. [51], introduced
in Section 3.1.2, proposed a probabilistic framework that models two distributions: (i) a conditional
distribution, which represents the probability of an output conditioned on the given annotation during
training; and (ii) a prediction distribution which represents the probability of an output at test time. The
parameters of the two distributions are estimated jointly by minimizing the dissimilarity coefficient [82],
which measures the distance between any two distributions using a task specific loss function. This
proposed framework was introduced in Section 3.2.

The aforementioned dissimilarity coefficient based framework has provided promising results in
domains where the conditional distribution is simple to model (that is, consists of terms that depend on
a few variables at a time) [51, 136]. However, WSOD poses greater difficulty due to the complexity of
the underlying conditional distribution. Specifically, given the hundreds or even thousands of bounding
box proposals for an image, the annotation constraint imposes a term over all of these bounding box
proposals such that at least one of them corresponds to the given weak labels, such as image-level,
count, point, or scribble annotations. This leads to a challenging scenario where the distribution is not
factorizable over the bounding box proposals. While previous works have approximated this uncertainty
as a fully factorized distribution for computational efficiency, we argue that such a choice leads to poor
accuracy.

To overcome the difficulty of a complex conditional distribution, we make the key observation that
deep learning relies on stochastic optimization. Therefore, we do not need to explicitly model this
complex distribution but simply estimate the distribution using samples. This observation opens the
door to the use of appropriate deep generative models such as the Discrete DISCO Nets [83, 84].

We test the efficacy of our approach on the challenging PASCAL VOC 2007, 2012, and MS COCO
2014, 2017 data sets. To generate the weakly supervised data sets, we discard the bounding box anno-
tations, keeping only the image-level labels and, optionally, keeping the per-class object count, points,
or scribbles. Using simple image-level labels we achieve 58.1%, 55.4%, 28.6%, and 28.9% detection
mAP@0.5 on PASCAL VOC 2007, 2012, MS COCO 2014 and 2017 data sets respectively, signifi-
cantly improving the state-of-the-art on all the data sets. Using count supervision provides an average
increase of 2.3% detection mAP@0.5 across all data sets. Additionally, using point and scribble anno-
tations we obtain a further increase of 3.3%, and 0.8% detection mAP@0.5 on MS COCO 2014 data set
respectively giving state-of-the-art results for WSOD using various types of inexpensive annotations.

To summarize, we make the following contributions.

* A unified weakly supervised framework to train object detectors with varying levels of weak

labels, such as image-level, count, point, and scribble annotations.

* Efficiently model the complex non-factorizable, annotation aware, spatially consistent conditional
distribution using the deep generative model, the Discrete DISCO Net.

* Empirically show the importance of modeling the uncertainty in the annotations in a single unified

probabilistic learning objective, the dissimilarity coefficient.
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* State-of-the-art performance for the task of WSOD on challenging PASCAL VOC 2007, PASCAL
VOC 2012, MS COCO 2014, and MS COCO 2017 data sets.

5.2 Related Work

Conventional methods often treat WSOD as a Multiple Instance Learning (MIL) problem [42] by
representing each image as a bag of instances (that is, putative bounding boxes) [48,49, 137-139]. The
learning procedure alternates between training an object classifier and selecting the most confident pos-
itive instances. However, these methods are susceptible to poor initialization. To address this, different
strategies have been developed, which aim to improve the initialization [47,138,140,141], regularize the
model with extra cues [48, 137], or relax the MIL constraint [49] to make the objective differentiable.
These hard-MIL based methods have demonstrated their effectiveness, especially when CNN features
are used to represent object proposals [137]. However, these models are not end to end trainable and do
not explicitly model the uncertainty.

A more interesting line of work is to integrate MIL strategy as deep networks such that they are end to
end trainable [124,125,131-134,142,143]. In their work, Bilen et al. [124] proposed a smoothed version
of MIL that softly labels object proposals instead of choosing the highest scoring ones. Building on their
work, Tang et al. [131] refine the prediction iteratively through a multi-stage instance classifier. Gao et
al. [127] presents a greedy approach to training a WSOD using per-class object count. Ren et al. [144]
presents a unified framework that can utilize all weakly supervised labels, such as image-level super-
vision, point supervision, and scribble supervision, but they don’t consider count supervision. Chen
et al. [145] presented their work that leverages point annotations to train object detectors. In contrast,
we propose a unified framework that can learn from any weakly supervised labels. Zhang et al. [133]
add curriculum learning using the MIL framework. In our formulation, we explicitly incorporate cur-
riculum learning based on object instance count. Tang et al. [146] proposes to cluster similar object
proposals to better distinguish between the object and background noise. In our framework, we cluster
object proposals such that the number of clusters are consistent with object count. Other end-to-end
trainable frameworks for WSOD employ domain adaptation [129, 138], expectation-maximization al-
gorithm [32, 126] and saliency based methods [128]. Although these methods are end to end trainable,
they not only model a single distribution for two related tasks but also model the complex distribution
with a fully factorized one. This design choice makes these approaches sub-optimal as what we truly
want is to model a distribution that enforces at least one bounding box proposal corresponding to the
given weak label.

To enhance weakly supervised detectors, some approaches combine them with strongly supervised
ones, typically using predictions from the weakly supervised detector as pseudo-strong labels to train
a strongly supervised network [131, 144, 147-151]. However, this usually involves a unidirectional
connection between the two. Wang et al. [143] propose a collaborative training approach for weakly and

strongly supervised models, similar in spirit to our use of two distributions, though they fully factorize
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their weakly supervised detector. Yin et al. [151] employ a teacher-student network, using an ensemble
of students for diverse pseudo ground truth, but without explicitly modeling uncertainty and using a
fully factorized distribution. In contrast, we model uncertainty in the conditional distribution to ensure
annotation consistency. The improvements reported in these works highlight the importance of modeling
separate distributions. In this work, we explicitly define and jointly train two distributions, minimizing

the dissimilarity coefficient [82] based objective function.

5.3 Model

5.3.1 Notation

Following the notations prescribed in Section 3.2.1, we denote an input image as x € RUHXWx3),

where H and W are the height and the width of the image respectively. For the sake of simplifying the
subsequent description of our approach, we assume that we have extracted B bounding box proposals
from each image. In our experiments, we use Selective Search [152] to obtain the aforementioned
bounding boxes. Each bounding box proposal, b, can belong to one of C' + 1 categories from the set
{0,1,...,C}, where category 0 is background, and categories {1, ..., C} are object classes.

We denote the weak annotation by a € 0UZ™. Here, al) = rif image x contains 7 instances of the
j-th object. We assume r = 1 where only object category labels are provided and count information is
absent. Furthermore, we denote the unknown bounding box labels by y = {y® | y € {0,...,C}B A
i=1,...B}, where y(® = j if the i-th bounding box b(*) is of the j-th category. A weakly supervised
data set W = {(x;,a;) | i = 1,..., N} contains N pairs of images x; and their corresponding image-
level labels a;. For point and scribble annotations, we retain only those bounding box proposals that
fully encompass the annotation. This approach ensures their compatibility with count supervision.

5.3.2 Probabilistic Modeling

Given a weakly supervised data set W/, we wish to learn an object detector that can predict the
bounding box labels y of a previously unseen image. Due to the uncertainty inherent in this task, we
advocate the use of a probabilistic formulation. Following Section 3.2, we define two distributions. The
first one is the prediction distribution Pr,(y|x; 6,), which models the probability of the bounding box
labels y given an input image x. Here 6, are the parameters of the distribution. As the name suggest,
this distribution is used to make the prediction at test time.

In addition to the prediction distribution, we also construct a conditional distribution Pr.(y|x, a; 0.),
which models the probability of the bounding box labels y given the input image x and its weak annota-
tions a. Here 6, are the parameters of the distribution. The conditional distribution contains additional
information, namely the presence of foreground objects in each image, or optionally object instance
count or localization information through point or scribble annotations. Thus, we can expect it to pro-

vide better predictions for the bounding box labels y. We will use this property during training in
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Figure 5.1 The overall architecture. (a) Prediction Network: a standard Fast-RCNN architecture is used
to model the prediction net. For an input image, bounding box proposals are generated from selective
search [152]. Features from each of these proposals are computed by the region of interest (ROI)
pooling layers, which are then passed through the classifier and regressor to predict the final bounding
box. (b) Conditional Network: a modified Fast-RCNN architecture is used to model the conditional
net. For a single input image x and three different noise samples {z1, 22,23} (represented as red, green
and blue matrix), three different bounding boxes {y(l), y3), y(3)} are sampled for the given image-
level label (bird in this example). Here the noise filter is concatenated as an extra channel to the final
convolutional layer. For both the networks, the initial conv-layers are fixed during training. Best viewed
in color.

order to learn an accurate prediction distribution using the conditional distribution. The details on the

modeling of the two distributions are discussed below.

5.3.2.1 Prediction Distribution

The task of the prediction distribution is to accurately model the probability of the bounding box
labels given the input image. Taking inspiration from the supervised models [3, 120, 121], we assume
independence between the probability of the output for each bounding box proposal. Therefore, the

overall distribution for an image equals the product of the probabilities of each proposal,

B

Pr,(y|x;0,) = HPrp(y(i)\x; 0,). (5.1)
i=1
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We model this distribution using the Fast-RCNN architecture [120] (see Figure 5.1(a)). As the prediction
distribution is specified by a neural network, we henceforth refer to it as the prediction net. In this

setting, the parameters of the distribution @), are the weights of the prediction net.

5.3.2.2 Conditional Distribution

Given B bounding box proposals for an image x and the weak annotation a, the conditional distri-
bution Pr.(y|x, a; 6.) models the probability of bounding box labels y under the constraint that they
are compatible with the annotation a. Specifically, we divide the B proposals into multiple clusters.
Each cluster of bounding boxes corresponds to a foreground object. The total number of clusters of
each foreground class should be equal to their image-level annotation a/ = .

Note that due to the requirement that the bounding box labels y are compatible with the annotation a,
the conditional distribution cannot be trivially decomposed over bounding box proposals. This is in stark
contrast to the simple prediction net, which uses a fully factorized distribution. If one were to explicitly
model the conditional distribution, then one would be required to compute its partition function during
training, which would be prohibitively expensive. To alleviate this computational challenge, we make
a key observation that in practice we only need access to a representative set of samples from the
conditional distribution. This opens the door to the use of Discrete DISCO Nets [84]. In what follows,
we briefly describe how Discrete DISCO Nets are adapted to our framework.

5.3.2.2.1 Discrete DISCO Nets Discrete DISCO Nets [84] is a deep probabilistic framework that
implicitly represents a probability distribution over a discrete structured output space. The strength of
the framework lies in the fact that it allows us to adapt a pointwise deep network (a network that provides
a single pointwise prediction) to a probabilistic one by the introduction of noise. Further discussion on
Discrete DISCO Nets is presented in Section 3.1.3.1.

In the context of our setting, consider the modified Fast-RCNN network in Figure 5.1(b) for the
conditional distribution. Once again, as we are using a neural network, we will henceforth refer to it as
the conditional net. The parameters of the conditional distribution 6, are the weights of the conditional
net. The colored filters in the middle of the network represent the noise that is sampled from a uniform
distribution. Each value of the noise filter z* results in a different score function' ]-"57% (6.) € REXC
for each bounding box proposal u, and the corresponding putative label y,,. We generate K different
score functions using K different noise samples. These score functions are then used to sample the
corresponding bounding box labels ¥ such that all ground truth labels are included in it. This enables
us to generate samples from the underlying distribution encoded by the network parameters. Note that
obtaining a single sample is as efficient as a simple forward pass through the network. By placing

the filters sufficiently far away from the output layer of the network, we can learn a highly non-linear

!The use of score function in this paper should not be confused with the scoring rule theory, which is used to design the
learning objective of DISCO Nets.
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mapping from the uniform distribution (used to generate the noise filter) to the output distribution (used
to generate bounding box labels).

In what follows, we will discuss how to redefine the score function .7-"573,“ (6.) to obtain a final score
function such that it is used to sample the bounding box proposal y*.

Initialization by Class Activation Maps In order to incorporate prior knowledge about potential
object location, we weigh the score function ]-"q_]f’yu (6.) with class activation maps (CAMs) C(y.) [62,
63].

Giya (¥e) = C(ye) X Fy, (0c). (52)

While, we can employ any CAM algorithm, in our experiments, we employ Layer-CAM [153]. When
no CAM based algorithm is used, we set C(yc) = 1.

Cluster Construction In order to effectively use the count information whenever they are available,
we propose to cluster the bounding box proposals such that the number of clusters is equal to the count
annotation. To form clusters, the proposals are sorted by their object confidences g{j’yu (yc) and the
following steps are iteratively performed:

1. Construct a cluster using the proposal with the highest object confidence for the r non-overlapping

instances. This ensures that the number of clusters is consistent with image-level label al9) = r.

2. Find proposals that overlap with a proposal in the cluster by more than 0.7 and merge them into

the cluster.

All object instances not forming part of the foreground objects are considered background boxes. The
pseudocode for cluster construction is presented in algorithm 5.

Spatial cluster regularization For each bounding box in a cluster corresponding to the foreground
object instance, we can redefine our score function such that highly overlapping proposal bounding

boxes should have similar scores and labels

B"\u
GEN (o) =GR ye) + > wibie (ye), (5.3)
i=1

where n is the iterator, B" are the bounding boxes belonging to a particular cluster, and w; = IOU (by, b;)
is the IOU between the two proposal boxes. Equation (5.3) is iteratively updated until the scores,
weighted by their IOUs, converge. While the algorithm guarantees convergence to a local minimum,
in practice, we limit the process to 5 iterations or until the scores stabilize. Empirical evidence shows
that 5 iterations are typically sufficient for convergence, providing a good balance between accuracy and
speed.

Annotation consistent constraint Finally, we would like to add a constraint such that there must
exist at least one bounding box in each clique that satisfies the annotation a.

B"

St (ye) = Z gqu:gu (ye) — Hi(ye), (5.4

=1
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Algorithm 5 Cluster Construction

Input: Bounding boxes B, scores Qq’iyu (y.), annotations al) = r, ToU threshold 7
Output: Dictionary of class-specific clusters with keys al?) and values as a list of exactly r clusters
1: Initialize a dictionary ‘dict* with keys al?) and values as empty lists
2: for all annotations at) > 0 do
3: Initialize variables:
4 Initialize an empty list ‘clusters®
5 Initialize a boolean array ‘used_boxes* of length | B| to track used boxes
6: Sort boxes and scores based on the maximum scores corresponding to a'?) in descending order
7 for all boxes b in sorted order do
8 if number of clusters > r then
9

: break
10: end if
11: if b is not used then
12: Create a new cluster with b
13: Mark b as used
14: for all remaining boxes b’ do
15: if ¢’ is not used and IoU(d, &) > 7 then
16: Add V' to the cluster
17: Mark b’ as used
18: end if
19: end for
20: Add the cluster to ‘clusters®
21: end if
22: end for
23: Ensure exactly r clusters by merging or splitting:
24: if number of clusters < r then
25: while number of clusters < r do
26: Split the largest cluster into two smaller clusters
27: end while
28: else if number of clusters > r then
29: while number of clusters > r do
30: Merge the two most similar or overlapping clusters
31: end while
32: end if
33: ‘dict‘[a(j)] < ‘clusters®
34: end for

35: return ‘dict’

where,

0 ifVje{l,...,C}st.al) =7
Hi(ye) = Jie{l,...,Byst.y® =3 (5.5)

oo otherwise.
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Algorithm 6 Conditional Net Inference Algorithm

Input: A dictionary of class-specific clusters ‘dict*, original scores S*(y..), annotations al) =r
Output: A dictionary Y containing a list of » maximum scoring boxes for each a?)
1: for all annotation a®@) in ‘dict* do

2 Initialize an empty list ‘max_boxes*
3 for all clusters B” in ‘dict[al)]* do > Iterative algorithm for spatial cluster regularization
4: repeatG. 'y, (y.) has converged
5 for all b,,b; € B" do
6 Update the scoring function:
B™\u
GEn (ye) =GRty + Y wiGly  (ye)
i=1
7 end for
8: until G/, (y.) has converged
> Greedily select the maximum scoring bounding box
o: Y[aW)] « arg max, e gr g{f;;u (ve)
10: end for
11: end for
12: return Y

Given the scoring function in equation (5.4), we compute the k-th sample as

y’g = arg maxyeySk(yc). (5.6)

Note that in equation (5.6) the arg max needs to be computed over the entire output space ). A naive
brute force algorithm for this would be computationally infeasible. However, by using the structure of
the higher order term #,, we can design an efficient yet exact algorithm for equation (5.6). Specifically,
we assign each bounding box proposal « to its maximum scoring object class. If all the ground truth
annotations a are not present in the generated bounding box labels, then we sample the bounding box
that has the highest score corresponding to the foreground label. The pseudocode for conditional net
inference is presented in algorithm 6.

For point and scribble supervision, we retain only the bounding box proposals that fully contain the
annotations. This approach not only narrows the problem’s search space but also ensures compatibility

with object instance count supervision.

5.4 Learning Objective

In order to estimate the parameters of the prediction and conditional distribution, 8,, and 8., we
define a unified probabilistic learning objective based on the dissimilarity coefficient [82]. To this end,

we require a task specific loss function, which we define next.
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5.4.1 Task Specific Loss Function

We define a loss function for object detection that decomposes over the bounding box proposals as

follows:

B

A(y1,y2) Z (i, yd). (5.7)
Following the standard practice in most modern object detectors [154], A(ygi), yg)) is further decom-
posed as a weighted combination of the classification loss and the localization loss. We use A to denote
the loss ratio ( ratio of the weight of localization loss to the weight of classification loss). We use a
simple 0 — 1 loss as our classification loss A, and smoothL1 [120] for our localization loss Ay,

Formally, the task specific loss is given by,

Ay = Mgy, y$7) + M08, 5. (5.8)

Here, bgi) and bg) are the corresponding bounding box proposals for ygi) and yg).

5.4.2 Objective Function

The task of both the prediction distribution and the conditional distribution is to predict the bounding
box labels. Moreover, as the conditional distribution utilizes the extra information in the form of the
image-level label, it is expected to provide more accurate predictions for the bounding box labels y
Leveraging the task similarity between the two distributions, we aim to bring them closer so that the extra

knowledge of the conditional distribution can be effectively transferred to the prediction distribution.

To achieve this, we use the joint learning objective introduced in Section 3.2.3, which minimizes the
dissimilarity coefficient [82] between the prediction and conditional distributions. Our overall learning
objective for the task-specific loss A, tuned for object detection, follows the formulation presented in
Equation (3.2.3) and is expressed as:

N
0,0, = aregrélinZDISCA(Prp(y\x; 0,), Pr.(yla,x;6.)). 5.9
pfe 1

where DIS5C'a measures the dissimilarity between the prediction and conditional distributions using A,
a task-specific loss function designed for object detection. This formulation ensures that the prediction

distribution learns to replicate the conditional distribution’s enhanced accuracy for bounding box labels.

The dissimilarity coefficient consists of self-diversity terms and a cross-diversity term, as outlined in
Section 3.1.1. As discussed in Section 5.3.2, directly modeling the conditional distribution is challeng-
ing. Consequently, the corresponding diversity terms are estimated stochastically using K samples y’;

generated by the conditional network.

63



Thus, using equations (3.15, 3.17) to compute self-diversity terms, and equation (3.10) to compute

cross-diversity term for the given task specifc loss (equation (5.7)), we obtain,

K
1
DIV (Pry, Pre) = ZZZPrp (y);0,) Ay, g ), (5.10)
=1 k=1 Yp
DIVA(Pre,Pry) = —— i XB:A(y’“@ AR 5.11)
CH C K(K—l)Bkkl—l Z:1 C ) C 9 .
e
B

DIV(Pr,, Pr,) = ZZZP;,, 0:0,) Pry(y'\;0,)A(y D), y' ). (5.12)

=1 (1) /('L)

P

Here, DIV (Pr,, Pr.) measures the diversity between the prediction net and the conditional net, which
is the expected difference between the samples from the two distributions as measured by the task
specific loss function A. Here Pr), is explicitly modeled, hence the expectation of its sample can be
computed easily. However, as Pr, is not explicitly modeled, we compute the required expectation by
drawing K samples from the distribution. Likewise, DIV (Pr,, Pr.) measures the self diversity of the
conditional net. We draw K samples from the distribution to compute the required expectation. Also,
the self diversity of the prediction net DIV (Pry, Pr),) can be exactly computed as Pr, is explicitly
modeled.

5.5 Optimization

As explained in Section 3.2.4, since we employ deep neural networks to model the two distributions,
our objective function (3.6) is ideally suited to be minimized by stochastic gradient descent. While it
may be possible to compute the gradients of both networks simultaneously, in this work we use a simple
coordinate descent optimization strategy. In more detail, the optimization proceeds by iteratively fixing
the prediction network and learning the conditional network, followed by learning the prediction net-
work for the fixed conditional network. The details of the learning process is specified in Sections 3.2.4.1
and 3.2.4.2.

For the case where object count labels are present, we employ a simple curriculum-learning based
strategy. We first iteratively train the two networks for images with images that have a single object

count. Next, we progressively increase the number of objects present in the training image.
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5.5.1 Visualization of the learning process

Figure 5.2 Visualization of prediction and conditional network outputs. For the prediction network,
results are shown after applying non-maximal suppression with a score threshold of 0.7. Columns
1 and 3 show predictions from the prediction network, while columns 2 and 4 show those from the
conditional network, with rows 1, 2, and 3 corresponding to predictions after the first, third, and sixth
iterations, respectively. Image set (a) represents a simple case with single object instances and image-
level annotations during training, while image set (b) illustrates a complex scenario with multiple object
instances and image-level annotations. Image sets (c) and (d) depict the same complex scenario with
count and point supervision, respectively. Object classes are color-coded: green for person, red for

bottle, and blue for dog.
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Figure 5.2 provides the visualization of the performance of the two networks over the different it-
erations of the iterative learning procedure. Figure 5.2(a) demonstrates a simple example where single
instance of each object is present and only image-level annotations are present during training. Fig-
ure 5.2(b) demonstrates a more complex example where several instances of the same object are present
and only image-level annotations are present during training. Figure 5.2(c) and 5.2(d) demonstrates the
complex example in presence of count annotations and point annotations during training respectively.
The estimated bounding box labels from the prediction net and those sampled from the conditional net
are depicted. For conditional net, we superimpose five different samples of bounding box labels. If all
the samples agree with each other on bounding box labels, the bounding boxes will have a high over-
lap, otherwise they will be scattered across the image. For visualization purposes only, a standard non
maximal suppression (NMS) is applied with a score threshold of 0.7 on the output of the prediction net.
However, note that the non maximal suppression is not used during the training of the prediction net.
The two steps of the iterative algorithm are described below in brief. For completeness, the details are

provided in Appendix B.

In order to visualize the learning process, let us first consider the simple example (Figure 5.2(a)),
where only image-level annotations are present during training. We observe that initially (in iteration
1), the conditional net’s samples for both dog and bottle objects have high uncertainty, meaning the
samples are spread out and lack consensus. However, they are broadly localized over the object, an
information that can be exploited by our algorithm. The same is also reflected in the output of the
prediction net, which is unable to detect either object. Over the iterations, the knowledge from the
conditional net is transferred to the prediction net, and we see a gradual improvement in the uncertainty
of both the prediction net and the conditional net, finally resulting in accurate localization of both the

objects.

Figure 5.2(b) presents a challenging example where multiple instances of the object person are
present, and only image-level annotations are present during training. We observe that initially the
conditional net samples are extremely diverse (and has high uncertainty). Some samples correctly lo-
calizes one of the instances of the class person, but others span multiple instances of that class. The
output of the prediction net also reflects this, with partial localization of one of the object instances and
incorrect localization that contains multiple instances or no localization of an instance of the person
class. Over the iterations, the uncertainty of the prediction and the conditional net reduces, and we see
a better localization. Finally, the conditional network has low uncertainty in its samples, even though
it misses several instances of the object. The prediction net succesfully localizes several instances of
the class person, as it also learns from other images containing the person class in the data set during
iterative training. However, we see that the final output of the prediction net remains imperfect with

some instances not localized and some localization containing multiple instances of the same object.

In figure 5.2(c), we see the sample challenging example where count annotations are present during
training. We observe that due to our cluster construction (section 5.3.2.2), we can now take multiple

samples from the conditional net. Although, initially the uncertainty of the conditional net is high, the
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samples obtained are better localized than the case where only image-level annotations were present.
Over the iterations, we see the uncertainty in both the prediction and conditional nets reducing. We note
that in this case, many of the instances are correctly localized but some instances are either partially
localized and some localization contains multiple instances.

Finally, in figure 5.2(d), we consider the challenging example where point annotations are available.
We observe that initially the uncertainty of the prediction net is high, but the uncertainty in the con-
ditional net is low. Over the iterations, the information present in the conditional net is successfully
transferred to the prediction net, where the final output accurately localizes all instances of the same

class.

5.6 Experiments

5.6.1 Data set and Evaluation Metrics

Data set: We evaluate our method on the challenging VOC 2007, and VOC 2012 in PASCAL
VOC [13], and COCO 2014 and COCO 2017 in MS COCO [14] data sets. We use the trainval set
in VOC 2007 and VOC 2012 data sets that has 5,011 and 11, 540 images respectively for 20 object
categories, and the test set contains 4, 951 and 10, 991 images for evaluation. COCO 2014 data includes
around 82, 783 images for training and 40, 504 images for validation for 80 object categories. COCO
2017 has 118, 287 images in the train set and 5, 000 images in the validation set.

As we focus on weakly supervised detection, only image-level labels () are utilized during train-
ing. We retain instance count information (C') for count supervision. For point annotations (P), we
use quasi-center point annotations, where the center of the ground-truth bounding boxes serves as the
point annotation. However, if there is an overlap between bounding boxes, we select the nearest non-
overlapping point from the center box. In cases where the point annotation falls outside the object or
is contained inside other bounding box, we do not make corrections. For scribble (S) supervision, we
adopt the setup proposed by Ren ef al. [144]. Note that Ren et al. [149] provide scribble annotations
only for COCO 2014 data set. Therefore, for scribble supervision, we only consider COCO 2014 data
set.

Evaluation Metric We use two metrics to evaluate our detection performance on the PASCAL VOC
data set. First, we evaluate detection using mean Average Precision (mAP) on the PASCAL VOC
2007 and 2012 test sets, following the standard PASCAL VOC protocol [13]. Second, we compute
CorLoc [155] on the PASCAL VOC 2007 and 2012 trainval splits. CorLoc is the fraction of positive
training images in which we localize an object of the target category correctly. Following [13], a detected
bounding box is considered correct if it has at least 0.5 IoU with a ground truth bounding box.

MS-COCO presents a greater challenge compared to PASCAL VOC, as it contains significantly more
instances per image (approximately 7 versus 2) and a larger number of classes (80 versus 20). We report
mAP results at IoU thresholds of 0.5 and 0.75, along with the more comprehensive AP metric. AP is
calculated as the average mAP across 10 IoU thresholds, ranging from 0.5 to 0.95 in 0.05 increments.
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5.6.2 Implementation Details

We use standard Fast-RCNN [120] to model prediction distribution and a modified Fast-RCNN to
model the conditional distribution, as shown in Figure 5.1(a). We use the ImageNet pre-trained VGG16
Network [156] and ImageNet pre-trained ResNet network [157] as the base CNN architectures for both
our prediction and conditional nets.

The Fast-RCNN architecture is modified by adding a noise filter in its 5*" conv-layer as an extra chan-
nel as shown in Figure 5.1(b). A 1 x 1 filter is used to bring the number of channels back to the original
dimensions (512 channels). No architectural changes are made to the prediction net. The bounding box
proposals required for the Fast-RCNN are obtained from the Selective Search algorithm [152]. Results
based on the Region Proposal Networks are given in the supplementary material.

For all our experiments we choose K = 5 for the conditional net. That is, we sample 5 bounding
boxes corresponding to 5 noise filters, which are themselves sampled from a uniform distribution. For
all other hyper-parameters, we use the same configurations as described in [120].

In order to initiate the training of our proposed framework, we first train the conditional network
using the thresholded CAM output as a pseudo bounding box label. Specifically, we threshold the CAM
output at 0.7 and create a bounding box that tightly encloses the resulting mask. When count information
(C) is available, we ensure that the number of pseudo bounding boxes matches the count annotation. If
point (P) or scribble (S) annotations are available, we retain only those bounding box proposals that

contain the corresponding point or scribble annotation.

5.6.3 Results

In this subsection, we first compare our method with the current state-of-the-art approaches for de-
tection and correct localization tasks on the PASCAL VOC data sets, as well as for detection task on the
MS COCO data sets. Next, through ablation experiments, we examine how the different components
used to redefine the score function and various terms in our dissimilarity coefficient-based objective

function contribute to the improvement in accuracy.

5.6.3.1 Comparison with other methods

We compare our proposed method with other state-of-the-art weakly supervised methods with vary-
ing levels of weak supervision. The performance on detection average precision and correct localiza-
tion metrics for the PASCAL VOC data sets and the detection average precision metrics for the MS
COCO data sets are presented in table 5.1. We employ two different backbones for our networks, VGG-
16 [156], and ResNet-50 [157]. Compared with the other methods, our proposed framework achieves
state-of-the-art performance using a single model and using the selective search for bounding box pro-
posals across varying levels of weak supervision. This demonstrates the efficacy and generalizability
of our proposed approach. We also observe a consistent gain of accuracy (> 1%) when using a bigger
model that uses ResNet-50, over the baseline model that has VGG-16 as its backbone. Although not
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Table 5.1 Comparison with the state-of-the-art WSOD methods on PASCAL VOC and MS COCO data
sets.

VOC 2007 VOC 2012 COCO 2014 COCO 2017

mAP CorLoc mAP CorLoc  Avg. Precision, loU: Avg. Precision, IoU:
0.5:095 05 075 0.5:095 05 0.75

Method Sup. Backbone

WSDDN [124] I VGG16  34.8 53.5 - - 9.5 192 82 - - -
OICR [131] I VGG16  47.0 64.3 425 65.6 7.7 174 - - - -
WSOD? [147] I VGG16  53.6 69.5 47.2 71.9 10.8 227 - - - -
C-MIDN [148] I VGG16  52.6 68.7 50.2 71.2 9.6 214 - - - -
MIST [149] I VGG16 549 68.8 52.1 70.9 114 243 94 12.4 258 10.5
OD-WSCL [150] I VGG16  56.1 69.8 54.6 71.2 144 290 124 13.6 274 122
CBL [151] 1 VGGl16 574 71.8 53.5 72.6 13.6 276 - - - -
PredNet (Ours) I VGG16  58.1 72.4 554 72.9 148 28.6 14.2 15.1 28.9 14.6
OICR [131] 1 R-50 50.1 - - - - - - - - -
OD-WSCL [150] I R-50 56.6 - - - 139 29.1 11.8 13.8 27.8 12.1
PredNet (Ours) 1 R-50 594 73.9 56.6 74.8 154 289 149 159 298 151
C-WSL [127] c VGG16 482 66.1 454 66.9 - - - - - -
PredNet (Ours) C VGG16  59.6 74.1 56.8 75.1 172 31.6 155 178 321 164
PredNet (Ours) c R-50 60.7 74.9 57.0 76.3 176 319 15.7 183 323 16.7
UFO? [144] P VGG16 - - - - 124 270 - 135 279 -
PredNet (Ours) P VGG16  60.1 744 57.2 75.4 190 349 179 196 352 193
P2BNet [145] P R-50 - - - - 194 435 - 22.1 473 -
PredNet (Ours) P R-50 61.0 754 574 75.7 19.9 36.0 18.7 20.7 36.5 20.1
UFO? [144] N VGG16 - - - - 13.7 298 - - - -
PredNet (Ours) S VGG16 - - - - 198 357 19.0 - - -
PredNet (Ours) N R-50 - - - - 21.1 37.8 20.2 - - -

surprising, this trends demonstrate that our method is scalable and the accuracies can further improve

when using a bigger model that has better representational capacity (such as ResNet-101 or ViT).

Using image level annotations (/), our method significantly outperforms other state-of-the-art meth-
ods. Inspired by Bilen et al. [124], prior arts [124,131,147-151] employ a fully factorized distribution
in MIL objective. We empirically demonstrate the usefulness of modeling a complex distribution. Com-
pared to previous arts [131, 147-151] that uses two different networks, one for pseudo bounding box
generation, and another Fast-RCNN [120] for inference, our iterative training of both the networks using
a joint objective enables us to achieve superior performance. Compared to CBL [151], that generates
multiple pseudo bounding box labels using an ensemble of student networks to train a teacher network,
we get better results by explicitly modeling the uncertainty over the pseudo label generation process and

generating unbiased samples using the conditional network.

When we have access to instance count annotations (C'), our results improve significantly over the
image-level annotation baseline. This is especially noticeable (+2.4% and +2.7% AP for COCO 2014
and COCO 2017 respectively) for the MS COCO data sets that have higher instance counts per image
compared to the PASCAL VOC data sets. This improvement is attributed to the cluster construction and

the use of curriculum learning based on the instance count during training.
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Using point annotation (P), our method further improves the baseline based on count supervision and
achieves competitive results overall. Again, this is again noticeable in the more complex MS COCO data
sets, where several instances of the same object can be cluttered together, thus making the ground truth
point annotation more relevant. Using, scribble supervision (.5), we further improve the results obtained
using count supervision owing to the use of more accurate annotations. Note that due to our use spatial
consistency, the improvement achieved after using scribble supervision over point supervision is not as
high, thus highlighting the fact that our spatial consistency term effectively captures the extent of an
object.

5.6.4 Ablation Experiments

In this section, we examine the impact of applying CAMs, spatial regularization, and annotation
consistency constraints to redefine the score function on the COCO 2017 data set, where instance count
information is available. Additionally, we will explore the effects of the diversity coefficient terms and

the influence of curriculum learning within the same context.

Table 5.2 Ablation Experiment: Detection Average Precision on COCO 2017 data set with count an-
notation (C') under different settings. CAM is Class Activation Maps, SR is Spatial Regularization, and
AC is Annotation Consistent Constraint.

CAM SR AC | COCO 2017 (AP (0.5:0.95))

12.8

v 14.9
v 14.3

v 13.6

v v 16.9
v v 15.6
v oV 15.2

v v oV 17.8

5.6.4.1 Effect of redefining the score function

To obtain accurate bounding box samples from the conditional network, we redefined the score
function by incorporating CAM scores, spatial regularization, and an annotation consistency constraint.
Table 5.2 illustrates the performance impact of each component and their combinations.

Row 1 represents the baseline scenario, where the highest-scoring bounding box is sampled from
the conditional network. While the performance is comparable to other image-level weakly supervised
approaches [150].

Incorporating CAM scores yields a significant improvement of 2.1%, underlining the importance of
integrating strong priors in the proposed method. Similarly, adding spatial regularization alone leads

to a notable performance boost of 1.5%. This improvement can be attributed to spatial regularization’s
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ability to address the common issue where bounding boxes that cover only the most discriminative part
of an object are assigned the highest scores, thereby leading to the selection of more accurate bounding
boxes. When the model is constrained to select bounding boxes that are consistent with annotations,
a further performance gain of 0.8% is observed. This suggests that enforcing annotation consistency
encourages more accurate bounding box sampling.

Moreover, the table demonstrates that these three components are complementary to one another.
When combined, their performance improves beyond the individual gains, showing an even more sub-
stantial boost in accuracy. The best result, with an AP improvement of 5%, is achieved when all three
components—CAM scores, spatial regularization, and annotation consistency—are used together to
redefine the score function. This indicates that the synergy between these components is crucial for

maximizing detection performance.

5.6.4.2 Effect of the diversity coefficient terms

In order to understand the effect of various diversity coefficient terms in our objective (3.6), we re-
move the self-diversity term in one or both of our probabilistic networks (Pr. and Pr,,). To obtain a
single sample from our conditional network, we feed a zero noise vector (denoted by PW,). The pre-
diction network still outputs the probability of each bounding box belonging to each class. However,
by removing the self-diversity term, we encourage it to output a peakier distribution (denoted by PIV),).
Table 5.3 shows that both the self-diversity terms are important to obtain the maximum accuracy. Rela-
tively speaking, it is more important to include the self-diversity in the conditional network in order to
deal with the difficult examples. Moreover, this enforces a diverse set of outputs from the conditional

network, which helps the prediction network to avoid overfitting the samples during training.

5.6.4.3 Effect of instance count based curriculum learning

We examine the effect of curriculum learning, which leverages count information (when available)
to train the model with increasingly complex images progressively. Implementing curriculum learning
results in a performance improvement from 59.4% to 59.6% on the VOC 2007 data set. A more substan-
tial gain is observed on the more complex COCO 2017 data set, where the performance increases from
16.7% to 17.8%. Given that COCO 2017 contains an average of 7 instances per image (compared to
VOC 2007 that has an average of 2 instances per image), we argue that employing a simple curriculum
aids the model in learning better and more discriminative features during the early stages of training.
This enables the model to better grasp the concept of an object, ultimately enhancing its performance.

These results also show that our proposed approach is amenable to more complex data sets.

5.6.5 Additional Comments

Weakly supervised approaches have been shown to improve performance when trained with extra

data [144], CLIP alignment [158], or when using better region proposals such as MCG [150] or using
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Segment Anything Model (SAM) [159]. We consider these approaches to be complementary to our
method and can be easily incorporated. However, the scope of our study was to obtain the best perfor-
mance using diverse weakly supervised data without the need for external data. Additionally, in their
paper, Zhou et al. [158] uses ground truth bounding boxes during training, violating the weakly super-
vised setting. A similar issue is present in Seo et al. [159] that uses SAM based proposals to obtain
superior results. However, SAM [160] itself is partially trained with ground truth segmentation masks,

thus violating the weakly supervised setting.

Table 5.3 Detection Average Precision (%) for various ablative settings on COCO 2017 with instance
count annotation (C').

Pr,, Pr.
Method (proposed) Pr,, PW,. | PW,,Pr. | PW,, PW,
AP (0.5:0.95) 17.8 15.2 17.4 14.8

5.7 Discussion

We presented a novel framework to train an object detector using a weakly supervised data set. Our
framework employs a probabilistic objective based on dissimilarity coefficient to model the uncertainty
in the location of objects. We show that explicitly modeling the complex non-factorizable conditional
distribution is a necessary modeling choice and present an efficient mechanism based on a discrete
generative model, the Discrete DISCO Nets, to do so. Extensive experiments on the benchmark data
sets have shown that our framework successfully transfers the information present in the image-level

annotations for the task of object detection.
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Chapter 6

Weakly Supervised Instance Segmentation

6.1 Introduction

The instance segmentation task is to jointly estimate the class labels and segmentation masks of the
individual objects in an image. Significant progress on instance segmentation has been made based on
the convolutional neural networks (CNN) [10, 161-164]. However, the traditional approach of learning
CNN-based models requires a large number of training images with instance-level pixel-wise annota-
tions. Due to the high cost of collecting these supervised labels, researchers have looked at training
these instance segmentation models using weak annotations, ranging from bounding boxes [67, 165] to
image-level labels [166—171].

Many of the recent approaches for weakly supervised instance segmentation can be thought of as
consisting of two components. First, a pseudo label generation model, which provides instance segmen-
tations that are consistent with the weak annotations. Second, an instance segmentation model which is

trained by treating the pseudo labels as ground-truth, and provides the desired output at test time.

Seen from the above viewpoint, the design of a weakly supervised instance segmentation approach
boils down to three questions. First, how do we represent the instance segmentation model? Second,
how do we represent the pseudo label generation model? And third, how do we learn the parameters
of the two models using weakly supervised data? The answer to the first question is relatively clear:
we should use a model that performs well when trained in a supervised manner, for example, Mask
R-CNN [10]. However, we argue that the existing approaches fail to provide a satisfactory answer to

the latter two questions.

Specifically, the current approaches do not take into account the inherent uncertainty in the pseudo
label generation process [166, 169]. Consider, for instance, a training image that has been annotated to
indicate the presence of a person. There can be several instance segmentations that are consistent with
this annotation, and thus, one should not rely on a single pseudo label to train the instance segmentation
model. Furthermore, none of the existing approaches provide a coherent learning objective for the two
models. Often they suggest a simple two-step learning approach, that is, generate one set of pseudo

labels followed by a one time training of the instance segmentation model [166]. While some works
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consider an iterative training procedure [169], the lack of a learning objective makes it difficult to analyse
and adapt them in varying settings.

In this work, we address the deficiencies of prior work by (i) proposing suitable representations for
the two aforementioned components; and (ii) estimating their parameters using a principled learning
objective. In more detail, we explicitly model the uncertainty in pseudo labels via a conditional dis-
tribution. The conditional distribution consists of three terms: (i) a semantic class aware unary term
to predict the score of each segmentation proposal; (ii) a boundary aware pairwise term that encour-
ages the segmentation proposal to completely cover the object; and (iii) an annotation consistent higher
order term that enforces a global constraint on all segmentation proposals (for example, in the case of
image-level labels, there exists at least one corresponding segmentation proposal for each class, or in the
case of bounding boxes, there exists a segmentation proposal with sufficient overlap to each bounding
box). All three terms combined enable the samples drawn from the conditional distribution to provide
accurate annotation consistent instance segmentations. Furthermore, we represent the instance segmen-
tation model as an annotation agnostic prediction distribution. This choice of representation allows us to
define a joint probabilistic learning objective that minimizes the dissimilarity between the two distribu-
tions. The dissimilarity is measured using a task-specific loss function, thereby encouraging the models
to produce high quality instance segmentations.

We test the efficacy of our approach on the Pascal VOC 2012 data set. We achieve 50.9% mAPy 5,
28.5% mAPj, -5 for image-level annotations and 32.1% mAP;, -5 for bounding box annotations, resulting
in an improvement of over 4% and 10% respectively over the state-of-the-art.

To summarize, we make the following contributions:

* We provide an efficient model for the complex non-factorizable, annotation consistent and bound-

ary aware conditional distribution.

* We propose a joint probabilistic learning objective for training the conditional and the prediction

distributions.

¢ Our overall framework is easily extendable to different weakly supervised labels such as image-

level and bounding box annotations.

* Qur approach provides state-of-the-art performance for the task of weakly supervised instance
segmentation on the Pascal VOC 2012 data set.

6.2 Related Work

Due to the taxing task of acquiring the expensive per-pixel annotations, many weakly supervised
methods have emerged that can leverage cheaper labels. For the task of semantic segmentation various
types of weak annotations, such as image-level [68, 76, 172, 173], point [19], scribbles [74, 174], and
bounding boxes [175, 176], have been utilized. However, for the instance segmentation, only image-

level [166—171] and bounding box [67, 165] supervision have been explored. Our setup considers both
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the image-level and the bounding box annotations as weak supervision. For the bounding box annota-
tions, Hsu ef al. [165] employs a bounding box tightness constraint and train their method by employing
a multiple instance learning (MIL) based objective but they do not model the annotation consistency

constraint for computational efficiency.

Most of the initial works [170, 171] on weakly supervised instance segmentation using image-level
supervision were based on the class activation maps (CAM) [60, 62, 63,177]. In their work, Zhou et
al. [170] identify the heatmap as well as its peaks to represent the location of different objects. Although
these methods are good at finding the spatial location of each object instance, they focus only on the
most discriminative regions of the object and therefore, do not cover the entire object. Ge ef al [168] uses
the CAM output as the initial segmentation seed and refines it in a multi-task setting, which they train
progressively. We use the output of [170] as the initial segmentation seed of our conditional distribution
but the boundary aware pairwise term in our conditional distribution encourages pseudo labels to cover

the entire object.

Most recent works on weakly supervised learning adopt a two-step process - generate pseudo labels
and train a supervised model treating these pseudo labels as ground truth. Such an approach provides
state-of-the-art results for various weakly supervised tasks like object detection [37, 77, 80], semantic
segmentation [67, 175], and instance segmentation [166, 169]. Ahn et al. [166] synthesizes pseudo
labels by learning the displacement fields and pairwise pixel affinities. These pseudo labels are then
used to train a fully supervised Mask R-CNN [10], which is used at the test time. Laradji et al. [169]
iteratively samples the pseudo segmentation label from MCG segmentation proposal set [178] and train
a supervised Mask R-CNN [10]. This is similar in spirit to our approach of using the two distributions.
However, they neither have a unified learning objective for the two distribution nor do they model the
uncertainty in their pseudo label generation model. Regardless, the improvement in the results reported
by these two methods advocates the importance of modeling two separate distributions. In our method,
we explicitly model the two distributions and define a unified learning objective that minimizes the

dissimilarity between them.

Our framework has been inspired by the work of Kumar et al. [51] who were the first to show the
necessity of modeling uncertainty by employing two separate distributions in a latent variable model.
This framework has been adopted for weakly supervised training of CNNs for learning human poses
and object detection tasks [37, 136]. While their framework provides an elegant formulation for weakly
supervised learning, its various components need to be carefully constructed for each task. Our work can
be viewed as designing conditional and prediction distributions, as well as the corresponding inference

algorithms, which are suited to instance segmentation.
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6.3 Method

6.3.1 Notation

In line with the notation specified in Section 3.2.1, we denote an input image as x € R XWx3),

where H and W are the height and the width of the image respectively. For each image, a set of segmen-
tation proposals R = {ry,...,rp} are extracted from a class-agnostic object proposal algorithm. In this
work, we use Multiscale Combinatorial Grouping (MCG) [178] to obtain the object proposals. For the
sake of simplicity, we only consider image-level annotations in our description. However, our frame-
work can be easily extended to other annotations such as bounding boxes. Indeed, we will use bounding
box annotations in our experiments. Given an image and the segmentation proposals, our goal is to
classify each of the segmentation proposals to one of the C' + 1 categories from the set {0, 1,...,C}.
Here category 0 is the background and categories {1, ..., C'} are object classes.

We denote the image-level annotations by a = {0, 1}, where al) = 1 if image = contains the
j—th object. Furthermore, we denote the unknown instance-level (segmentation proposal) label as
y = {0,...,C}F, where y() = j if the i—th segmentation proposal is of the j—th category. A
weakly supervised data set W = {(xp,a,) | » = 1,..., N} contains N pairs of images x,, and their

corresponding image-level annotations a,,.

6.3.2 Conditional Distribution

Given the weakly supervised data set WV, we wish to generate pseudo instance-level labels y such
that they are annotation consistent. Specifically, given the segmentation proposals R for an image x,
there must exists at least one segmentation proposal for each image-level annotation al?) = 1. Since
the annotations are image-level, there is inherent uncertainty in the figure-ground separation of the
objects. We model this uncertainty by defining a distribution Pr.(y | x,a; 6.) over the pseudo labels
conditioned on the image-level weak annotations. Here, 6. are the parameters of the distribution. We
call this a conditional distribution.

As highlighted in Section 3.2 , the conditional distribution itself is not explicitly represented. Instead,
we use a neural network with parameters 8, which generates samples that can be used as pseudo labels.
For the generated samples to be accurate, we wish that they have the following three properties: (i)
they should have high fidelity with the scores assigned by the neural network for each region proposal
belonging to each class; (ii) they should cover as large a portion of an object instance as possible; and
(iii) they should be consistent with the annotation.

6.3.2.1 Modeling

In order for the conditional distribution to be annotation consistent, the instance-level labels y need
to be compatible with the image-level annotation a. This constraint cannot be trivially decomposed over

each segmentation proposal. As a result, it would be prohibitively expensive to model the conditional
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Figure 6.1 The conditional net: a modified U-Net architecture is used to model the conditional net. For
a single input image and three different noise samples {z', 22, 23} (represented as red, green, and blue
matrix) and a pool of segmentation proposals, three different instances are predicted for the given weak
annotation (aeroplane in this example). Here the noise sample is concatenated as an extra channel to
the final layer of the U-Net. The segmentation proposals are multiplied element-wise with the global
feature to obtain the proposal specific feature. A global average pooling is applied to get class specific
score. Finally, an inference algorithm generates the predicted samples.

distribution directly as one would be required to compute its partition function. Taking inspiration from
Arun et al. [37], we instead draw representative samples from the conditional distribution using the
Discrete DISCO Nets [84]. We will now describe how we model the conditional distribution through a
Discrete DISCO Nets, which we will now call a conditional net. Further discussion on Discrete DISCO
Nets is present in Section 3.1.3.

Consider the modified fully convolutional U-Net [8] architecture shown in figure 6.1 for the condi-
tional distribution. The parameters of the conditional distribution 8. are modeled by the weights of the
conditional net. Similar to [179], noise sampled from a uniform distribution is added after the U-Net
block (depicted by the colored filter). Each forward pass through the network takes the image x and
noise sample z* as input and produces a score function Fzﬁyu (8.) for each segmentation proposal u and
the corresponding putative label y,. We generate K different score functions using K different noise
samples. These score functions are then used to sample the segmentation region proposals y* such that
they are annotation consistent. This enables us to efficiently generate the samples from the underlying

distribution.

6.3.2.2 Inference

Given the input pair (x, z") the conditional net outputs K score functions for each of the segmenta-
tion proposal F{f,y“ (6.). We redefine these score functions to obtain a final score function such that it
is then used to sample the segmentation region proposals ylg. The final score function has the following

three properties.
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1. The score of the sampled segmentation region proposal should be consistent with the score func-
tion. This semantic class aware unary term ensures that the final score captures the class specific

features of each segmentation proposal. Formally, Gﬁ,y (ye) = Fk_ (6.).

UsYu

2. The unary term alone is biased towards segmentation proposals that are highly discriminative.
This results in selecting a segmentation proposal which does not cover the object in its entirety.
We argue that all the neighboring segmentation proposals must have the same score discounted

by the edge weights between them. We call this condition boundary aware pairwise term.

In order to make the score function Gﬁ,yu (yc) pairwise term aware, we employ a simple but ef-
ficient iterative algorithm. The algorithm proceeds by iteratively updating the scores Gﬁ’yu (ve)
by adding the contribution of their neighbors discounted by the edge weights between them until
convergence. In practice, we fix the number of iteration to 3. Note that, it is possible to back-
propagate through the iterative algorithm by simply unrolling its iterations, similar to a recurrent
neural networks (RNN). Formally,
Giy,(ye) = Gy H(ye) +

U Yu U Yu

————————exp (—Ly.). 6.1
Hy ™M ye) +6
Here, n denotes the iteration step for the iterative algorithm and § is a small positive constant
added for numerical stability. In our experiments, we set § = 0.1. The term qufg _1(yc) is the
difference between the scores of the neighboring segmentation proposal. It helps encourage same
label for the neighboring segmentation proposals that are not separated by the edge pixels. It is
given as,
2
kn— k, k
HE v = > (Gha ve) = Ghall(ve)) (6.2)
U,UEN u

The term I, ,, is the sum of the edge pixel values between the two neighboring segmentation
regions. Note that the pairwise term is a decay function weighted by the edge pixel values. This
ensures a high contribution to the pairwise term is only from the pair of segmentation proposals

that does not share an edge.

3. In order to ensure that at there must exist at least one segmentation proposal for every image-level
annotation,a higher order penalty is added to the score. We call this annotation consistent higher

order term. Formally,
Z Gu 2Yu yc (yC) (63)

Here,
0 ifvj e {1,...,C}st.al) =1,
Q"(yc) = 3i € Rs.t. y® =7, (6.4)

—oo otherwise.
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Given the scoring function in equation (6.3), we compute the £—th sample of the conditional net

as,

y" = argmax S*(y.).
yey

(6.5)

Observe that in equation (6.5), the arg max is computed over the entire output space ). A naive

brute force algorithm is therefore not feasible. We design an efficient greedy algorithm that se-

lects the highest scoring non-overlapping proposal. The inference algorithm is described in Algo-

rithm 7.

Algorithm 7 Inference Algorithm for the Conditional Net

Input: Region masks R, Image-level labels a
Output: Predicted instance-level instances yff

Ju—

DO DN DD = = e e e e e e e e
D229 R 3N hH R 22

D AR A i

Initialize: GX | (y.) < F¥_ (6.)

repeatGﬁ’,;u (yc) has converged
for all v € \V,, do
H ™ (ye) & Covens, (Guy ' (ve) = Gog (v0)°
Guy.(ve) « Guy. (ye) + exp(—Iu)
end for
until G (y.) has converged
Greedily select highest scoring non-overlapping proposal:
Y+ 0
forall j < {1,...,C}and a¥) = 1 do
Y+ 0
R; + sort(Gﬁ’,gu (ye))
fori < 1to Pdo
Y < YU {ri}
Rj < R\ {ri}
for all/ € R; and “T—r;” > tdo
Rj < Rj \{r}
end for
end for
Y < YUY;

-1
Hyd ™ (ye)+d

: end for

return y* < Y

> Iterative Algorithm

6.3.3 Prediction Distribution

The task of the supervised instance segmentation model is to predict the instancemask given an
image. We employ Mask R-CNN [18] for this task. As predictions for each of the regions in the Mask

R-CNN is computed independently, we can view the output of the Mask R-CNN as the following fully
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factorized distribution,
R

Prp(y | x;0,) = [[Pr(yi | ri,xi:0,). (6.6)

i=1
Here, R are the set of bounding box regions proposed by the region proposal network and r; are its
corresponding region features. The term y; is the corresponding prediction for each of the bounding box
proposals. We call the above distribution a prediction distribution and the Mask R-CNN a prediction

network.

6.4 Learning Objective

In this section, we present the learning objective for instance segmentation in a weakly supervised
setting. The goal is to learn the parameters of the prediction and conditional distributions, 6,, and 0.,
respectively. Both distributions aim to predict instance segmentation masks, but the conditional distribu-
tion benefits from additional image-level annotations, enabling it to produce more accurate predictions.
By leveraging the task similarity between the two distributions, we align them to facilitate the transfer
of knowledge from the conditional distribution to the prediction distribution.

The joint learning objective, introduced in the previous chapter (Section 3.2.3), minimizes the dis-
similarity coefficient [82] between the prediction and conditional distributions. We build upon this

objective to address the task-specific requirements of instance segmentation.

6.4.1 Task-Specific Loss Function

The dissimilarity coefficient requires a task-specific loss function, A, to compute the alignment
between the two distributions. For instance segmentation, we adopt the multi-task loss defined by Mask
R-CNN [10]:

A(y1,y2) = Aas(y1,¥2) + Abox (Y1, ¥2) + Amask (Y1, ¥2)- (6.7)
Here, A is the classification loss (log loss), Apox is the bounding box regression loss (smooth-L1
loss), and Apagk 1S the segmentation loss (pixel-wise cross-entropy).

For the conditional network, which outputs only segmentation regions y, Ay is inactive, leaving
only A5 and Apsk active. In contrast, all three components are active for the prediction network. To
handle bounding box information, a pseudo bounding box is constructed around the segmentation label,
which serves as a bounding box label for Mask R-CNN.

6.4.2 Learning Objective for Instance Segmentation

Using the task-specific loss A, the learning objective for instance segmentation extends the formula-
tion introduced in the previous chapter. It minimizes the dissimilarity coefficient between the prediction
and conditional distributions:

0,0, = areg Iélin DISCa (Prp(6,),Pre(6.)) . (6.8)
p¥c
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As discussed in Section 6.3.2, modeling the conditional distribution directly is challenging. Instead,
we approximate the diversity terms by drawing K samples, y*, from the conditional network. In accor-

dance with the equations (3.10, 3.15, 3.17) The diversity terms are computed as:

DIVA(Pry, Pr.) = KZZPTP 0:0,)A(yl?,y5), (6.92)
(7)
1 K
DIVA(Pr.,Pry) = ———— AlyF, y¥ .
Va(Pre,Pre) = gy D Aeve): (6.9b)
kk'=1
k’;ék
DIVA(Pry, Prp) = > S Pr(y1):6,) Pry(y'y); 0,) A(y D, y'\)). (6.9¢)
(1) /(>
p p

Here, DIV (Pry, Pr.) measures the cross-diversity between the prediction and conditional distri-
butions, representing the expected loss between samples from the two distributions. While Pr,, is fully
factorized, enabling direct computation of expectations, Pr. is approximated using K samples. This

approach ensures efficient computation while preserving the alignment between distributions.

6.5 Optimization

As highligted in Section 3.2.4, the parameters of the two distribution, ¢, and 6. are modeled by
a neural network, it is ideally suited to be minimized by stochastic gradient descent. We employ a
coordinate descent strategy to optimize the two sets of parameters. The algorithm proceeds by iteratively
fixing the prediction network and training the conditional network, followed by learning the prediction
network for a fixed conditional network.

The iterative learning strategy results in a fully supervised training of each network by using the
output of the other network as the pseudo label. This allows us to readily use the algorithms developed
in Mask R-CNN [10] and Discrete DISCO Nets [84]. Note that, as the conditional network obtains
samples over the arg max operator in equation (6.5), the objective (6.8) for the conditional network is
non-differentiable. However, the scoring function S*(y.) in equation (6.3) itself is differentiable. This
allows us to use the direct loss minimization strategy [180, 181] developed for computing estimated
gradients over the arg max operator [84, 182].The details of the algorithm is discussed in Section 3.1.3

and algorithm 4.

6.5.1 Visualization of the learning process

Figure 6.2 provides the visualization of the output of the two networks for the first and the final
iterations of the training process. The first three columns are the three output samples of the conditional

distribution. Note that in our experiments, we output 10 samples corresponding to 10 different noise
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Figure 6.2 Examples of the predictions from the conditional and prediction networks for three different
cases of varying difficulty. Columns 1 through 3 are different samples from the conditional network. For
each case, its first row shows the output of the two networks after the first iteration and its second row
represents the output of the two networks after the fourth (final) iteration. Each instance of an object is
represented by different mask color. Best viewed in color.

samples. The fourth column shows the output of the prediction distribution. The output for the predic-
tion network is selected by employing a non-maximal suppression (NMS) with its score threshold kept
at 0.7, as is the default setting in [10]. The first row represents the output of the two networks after the

first iteration and the second row shows their output after the fourth (final) iteration.
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The first case demonstrates an easy example where two cats are present in the image. Initially, the
conditional distribution samples the segmentation proposals which do not cover the entire body of the
cat but still manages to capture the boundaries reasonably well. However, due to the variations in these
samples, the prediction distribution learns to better predict the extent of the cat pixels. This, in turn,
encourages the conditional network to generate a better set of samples. Indeed, by the fourth iteration,
we see an improvement in the quality of samples by the conditional network and they now cover the
entire body of the cat, thereby improving the performance. As a result, we can see that finally the

prediction network successfully learns to segment the two cats in the image.

The second case presents a challenging scenario where a person is riding a horse. In this case, the
person is occluding the front and the rear parts of the horse. Initially, we see that the conditional network
only provides samples for the most discriminative region of the horse - its face. The samples generated
for the person class, though not accurate, covers the entire person. We observe that over the subsequent
iterations, we get an accurate output for the person class. The output for the horse class also expands to
cover its front part completely. However, since its front and the rear parts are completely separated, the

final segmentation could not cover the rear part of the horse.

The third case presents another challenging scenario where there are multiple people present. Four
people standing in front and two are standing at the back. Here, we observe that initially, the conditional
network fails to distinguish between the two people standing in the front-left of the image and fails to
detect persons standing at the back. The samples for the third and the fourth persons standing in front-
center and front-right respectively are also not accurate. Over the iterations, the conditional network
improves its predictions for the four people standing in front and also sometimes detect the people

standing at the back. As a result, prediction network finally detects five of the six people in the image.

6.6 Experiments

6.6.1 Data set and Evaluation Metric
6.6.1.1 Data Set

We evaluate our proposed method on Pascal VOC 2012 segmentation benchmark [13]. The data set
consists of 20 foreground classes. Following previous works [67, 165, 166, 168], we use the augmented
Pascal VOC 2012 data set [183], which contains 10, 582 training images.

From the augmented Pascal VOC 2012 data set, we construct two different weakly supervised data
sets. The first data set is where we retain only the image-level annotations. For the second data set,
we retain the bounding box information along with the image-level label. In both the data sets, the

pixel-level labels are discarded.

83



6.6.1.2 Evaluation Metric

We adopt the standard evaluation metric for instance segmentation, mean average precision (mAP) [184].
Following the same evaluation protocol from other competing approaches, we report mAP with four in-
tersection over union (IoU) thresholds, denoted by mAP; where k denotes the different values of IoU
and k£ = {0.25,0.50,0.70,0.75}.

6.6.2 Initialization

We now discuss various strategies to initialize our conditional network for different levels of weakly

supervised annotations.

6.6.2.1 Image Level Annotations

Following the previous works on weakly supervised instance segmentation from image-level anno-
tations [166, 169, 171], we use the Class Activation Maps (CAMs) to generate the segmentation seeds
for each image in the training set. Specifically, like [166,169,171], we rely on the Peak Response Maps
(PRM) [170] to generate segmentation seeds that identify the salient parts of the objects. We utilize
these seeds as pseudo segmentation labels to initially train our conditional network. We also filter the
MCG [178] segmentation proposal such that each selected proposal has at least a single pixel overlap
with the PRM segmentation seeds. This helps us reduce the number of segmentation proposals needed
thereby reducing the memory requirement. Once the initial training for the conditional network is over,

we proceed with the iterative optimization strategy, described in section 6.5.

6.6.2.2 Bounding Box Annotations

For the weakly supervised data set where bounding box annotations are present, we filter the MCG [178]
segmentation proposals such that only those who have a high overlap with the ground-truth bounding
boxes are retained. The PRM [170] segmentation seeds are also pruned such that they are contained

within each of the bounding box annotations.

6.6.3 Implementation Details

We use the standard Mask R-CNN as the prediction network and adapt the U-Net architecture for
the conditional network, as shown in figure 6.1. For a fair comparison, the prediction network, we
use ImageNet pre-trained ResNet-50 architecture for experiments with image-level annotation and a
pretrained ResNet-101 architecture for the bounding box annotations.

Similar to [179], the U-Net architecture is modified by adding a noise sample as an extra channel after
the deconvolutional layers as shown in figure 6.1. A 1 X 1 convolution is applied to bring the number of
channels back to the original dimensions (32 channels). The segmentation region proposal masks taken

from MCG [178] is then multiplied element-wise with the features from all the channels. This allows us
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to extract features only from the segmentation proposal. A 1 x 1 convolution is applied again to make
the number of channels equal to the number of classes. This is followed by a global average pooling
layer which gives us, for each of the segmentation proposals, a vector of dimensions equal to the number
of classes. This vector for each of the segmentation proposal is passed to the inference algorithm which
in turn provides the output segmentation masks corresponding to the image-level annotations. For all
our experiments we choose K=10 for the conditional network and use the Adam optimizer. For all the
other hyper-parameters we use the same configuration as described in [179]. For the prediction network,
we use default hyper-parameters described in [10].

We also study the effect of an alternative architecture for the conditional network. In what follows,
we provide the details of this ResNet based conditional network.

Figure 6.3 ResNet based conditional network

The architecture for the ResNet based conditional network is shown in figure 6.3. The image is first
passed through the ResNet module to obtain low-resolution high-level features. For the experiments
where we use only the image-level annotations, a ResNet-50 module is employed and where we use
the bounding-box level annotations, a ResNet-101 module is used. A noise filter is appended as an
extra channel followed by a 1 x 1 convolutional filter, which brings the number of channels back to
the original dimensions. The segmentation proposal masks are then multiplied element-wise to obtain
segmentation proposal specific features. Next, a 1 x 1 convolutional is applied to make the number of
channels equal to the number of classes. Finally, a global average pooling is applied to obtain a vector
whose dimensions is equal to the number of classes in the data set. This vector is then passed through
the inference algorithm to obtain the final predicted samples. The results obtained using this ResNet
based conditional network architecture are called as Ours (ResNet-50) and Ours (ResNet-101).

Note that, the U-Net based conditional network provides a higher resolution image features as com-
pared to its ResNet based counterparts. These are then used to obtain the individual features of the
segmentation mask proposals. The higher resolution features thus provide richer per-mask features.

These are especially useful for smaller objects and cluttered environment where context resolution is
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important. The superior results of our method when using a U-Net based conditional network empiri-

cally verify this claim.

6.6.4 Results

6.6.4.1 Comparison with other methods

Table 6.1 Evaluation of instance segmentation results from different methods with varying level of su-
pervision on Pascal VOC 2012 val set. The terms F, B, and T denotes a fully supervised approach,
methods that uses the bounding box labels, and methods that uses the image-level labels respectively.
Our prediction network results when using a ResNet based conditional network is presented as ‘Ours
(ResNet-*)" and the results of the prediction network using a U-Net based conditional network is pre-
sented as ‘Ours’.

Method Supervision | Backbone | mAP{ o5 | mAPj 5, | mAPj 7o | mAP] -5
Mask R-CNN [10] F R-101 76.7 67.9 52.5 44.9
PRN [170] z R-50 44.3 26.8 - 9.0
IAM [171] 7z R-50 45.9 28.8 - 11.9
OCIS [167] T R-50 48.5 30.2 - 14.4
Label-PEnet [168] T R-50 49.1 30.2 - 12.9
WISE [169] z R-50 49.2 41.7 - 23.7
IRN [166] 7z R-50 - 46.7 - 235
Ours (ResNet-50) A R-50 59.1 49.7 29.2 27.1
Ours T R-50 59.7 50.9 30.2 28.5
SDI [67] B R-101 - 44.8 - 17.8
BBTP [165] B R-101 75.0 58.9 30.4 21.6
Ours (ResNet-101) B R-101 73.1 57.7 335 31.2
Ours B R-101 73.8 58.2 34.3 321

We compare our proposed method with other state-of-the-art weakly supervised instance segmenta-
tion methods. The mean average precision (mAP) over different IoU thresholds are shown in table 6.1.
Compared with the other methods, our proposed framework achieves state-of-the-art performance for
both image-level and the bounding box labels. We also study the effect of using a different conditional
network architecture based on ResNet-50 and ResNet-101. This is shown in the table as ‘Ours (ResNet-
50)’ and ‘Ours (ResNet 101)’ respectively. Our main result employs a U-Net based architecture for
the conditional network and is presented by ‘Ours’ in the table. The implementation details and the
details of the alternative architecture are presented in the supplementary. The encoder-decoder archi-
tecture of the U-Net allows us to learn better features. As a result, we observe that our method which
adopts U-Net architecture for the conditional network consistently outperforms the one which adopts
a ResNet based architecture. In table 6.1, observe that our approach performs particularly well for the
higher IoU thresholds (mAPy 7, and mAPj ;5) for both the image-level and the bounding-box labels.
This demonstrates that our model can predict the instance segments most accurately by respecting the
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object boundaries. The per-class quantitative and qualitative results for our method is presented in the

supplementary material.

6.6.4.2 Class-specific results

We present the per-class result for our method on the Pascal VOC 2012 data set in table 6.2. The first
two rows correspond to the result where our method was trained only using the image-level annotations.
The last two rows correspond to the results where our methods were trained using the bounding box

annotations.The qualitative results for each class is presented in figure 6.4.

Figure 6.4 Qualitative results of our proposed approach on VOC 2012 validation set.
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Table 6.2 Per class result for mAP|, 5 metric on Pascal VOC 2012 data set for methods that are trained
on using image-level supervision T and bounding box annotations B

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike pson plant sheep sofa train tv | mAP
Ours (R?Nelﬁo) 742 526 686 441 250 634 359 726 182 471 246 635 537 673 409 294 428 396 695 612 49.7
O;rs 755 53.6 699 453 267 643 374 737 193 487 253 646 550 683 421 308 442 405 70.6 622 | 509
OU'S(RCZ,N“"IOU 779 626 738 490 359 726 458 784 297 557 319 706 613 736 492 399 508 479 765 69.6 | 577
O;rs 79.1 639 75.1 493 365 73.1 464 788 30.1 564 321 713 61.6 748 495 402 51.1 483 772 699 | 582

6.6.5 Ablation Experiments

Table 6.3 Evaluation of the instance segmentation results for the various ablative settings of the condi-

tional distribution on Pascal VOC 2012 data set.
mAP 55 mAP 5, mAPj 75

U U+P | U+P+H U U+P | U+P+H U U+P | U+P+H
57.9 | 59.1 59.7 47.6 | 499 50.9 23.1 | 269 28.5

6.6.5.1 Effect of the unary, the pairwise and the higher order terms

We study the effect of the conditional distributions unary, pairwise and the higher order terms have
on the final output in table 6.3. We use the terms U, U+P, and U+P+H to denote the settings where
only the unary term is present, both the unary and the pairwise terms are present and all three terms are
present in the conditional distribution. We see that unary term alone performs poorly across the different
IoU thresholds. We argue that this is because of the bias of the unary term for segmenting only the
most discriminative regions. The pairwise term helps allay this problem and we observe a significant
improvement in the results. This is specially noticeable for higher IoU thresholds that require more
accurate segmentation. The higher order term helps in improving the accuracy by ensuring that correct

samples are generated by the conditional distribution.

6.6.5.2 Effect of the probabilistic learning objective

Table 6.4 Evaluation of the instance segmentation results for the various ablative settings of the loss
function’s diversity coefficient terms on Pascal VOC 2012 data set.

Method Prp, Pr.
mAP? | (proposed) PW,,Pr. | Pr,, PW. | PW,, PW,

mAP] s | 597 59.5 573 572
mAP, ., | 509 50.3 46.9 46.6
mAP; .. | 285 277 234 23.0

To understand the effect of explicitly modeling the two distributions (Pr, and Pr.), we compare

our approach with their corresponding pointwise network. In order to sample a single output from our
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conditional network, we remove the self-diversity coefficient term and feed a zero noise vector (denoted
by PW,). For a pointwise prediction network, we remove its self-diversity coefficient. The prediction
network still outputs the probability of each proposal belonging to a class. However, by removing
the self-diversity coefficient term, we encourage it to output a peakier distribution (denoted by PIV)).
Table 6.4 shows that both the diversity coefficient term is important for maximum accuracy. We also
note that modeling uncertainty over the pseudo label generation model by including the self-diversity
in the conditional network is relatively more important. The self-diversity coefficient in the conditional
network enforces it to sample a diverse set of outputs which helps in dealing with the difficult cases and

in avoiding overfitting during training.

6.7 Conclusion

We present a novel framework for weakly supervised instance segmentation. Our framework ef-
ficiently models the complex non-factorizable, annotation consistent and boundary aware conditional
distribution that allows us to generate accurate pseudo segmentation labels. Furthermore, our frame-
work provides a joint probabilistic learning objective for training the prediction and the conditional
distributions and can be easily extendable to different weakly supervised labels such as image-level
and bounding box annotations. Extensive experiments on the benchmark Pascal VOC 2012 data set has
shown that our probabilistic framework successfully transfers the information present in the image-level
annotations for the task of instance segmentation achieving state-of-the-art result for both image-level

and bounding box annotations.
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Chapter 7

Conclusion and Future Work

We conclude the thesis by highlighting the key contributions and discussing the future directions.

7.1 Summary

This thesis tackles the challenge of training deep neural networks using weak annotations for visual
scene recognition tasks. Weak annotations, being less detailed and more ambiguous than fine-grained,
task-specific labels, pose significant obstacles to achieving accurate predictions. To overcome these
challenges, this research proposes a novel probabilistic framework that seamlessly transforms coarse

annotations into the fine-grained outputs essential for accurate and high-quality scene understanding.

7.1.1 Key Contributions

In the following sections, we will outline the key contributions of this thesis.

7.1.1.1 Probabilistic Framework

The primary contribution of this thesis is the development of a probabilistic framework based on
the dissimilarity coefficient objective. This framework aligns two distinct distributions: the conditional
distribution, which leverages weak annotations to generate task-specific predictions, and the predic-
tion distribution, which produces test-time outputs independent of the weak annotations. By explicitly
modeling uncertainty inherent in learning from imprecise labels, the framework effectively addresses
challenges posed by weak annotations. The dissimilarity coefficient objective ensures efficient knowl-
edge transfer, enabling the prediction network to deliver fine-grained outputs with high accuracy and
robustness.

This framework offers a principled and generalized approach to weakly supervised learning (WSL),
adaptable to a wide range of visual scene recognition tasks. By explicitly modeling uncertainty and
aligning distributions using the dissimilarity coefficient loss, the framework overcomes limitations of
existing methods, which often depend on a single distribution for conflicting tasks or lack mechanisms

to handle uncertainty effectively.

90



The framework employs deep generative models, such as DISCO Nets and Discrete DISCO Nets,
to efficiently sample from complex conditional distributions. Additionally, it integrates state-of-the-art
architectures like Hourglass Networks, Fast R-CNN, and Mask R-CNN to manage prediction distribu-
tions. This design enables flexibility in handling various types of weak annotations, including image-
level, point-level, and bounding box labels, while preserving the strengths of leading supervised models
during inference.

To train the framework, the thesis introduces both iterative and joint optimization strategies, striking
a balance between computational efficiency and convergence quality. These strategies ensure scalability
to large datasets and complex tasks.

The framework is validated across three challenging tasks—human pose estimation, object detection,
and instance segmentation—highlighting its versatility and effectiveness. For each task, the framework
incorporates task-specific priors and cues, such as activation maps, spatial constraints, and higher-order

terms, to achieve state-of-the-art performance.

7.1.1.2 Visual Scene Recognition Tasks

The effectiveness of the proposed framework is demonstrated through extensive experiments on
benchmark datasets across multiple tasks.

For human pose estimation, the framework aligns pose predictions with coarse action labels, achiev-
ing substantial improvements on the MPII and JHMDB datasets. By utilizing DISCO Nets to model pose
uncertainty and incorporate structural priors, the framework establishes a new benchmark for weakly
supervised pose estimation.

In object detection, the framework adeptly handles a variety of coarse annotations, including image-
level labels, count annotations, point annotations, and scribble annotations. By integrating class ac-
tivation maps, spatial regularization, and higher-order constraints, it outperforms existing methods on
the PASCAL VOC 2007, 2012, and MS COCO 2014, 2017 datasets. The efficient sampling algorithm
introduced for discrete generative models ensures precise modeling of complex conditional distribu-
tions, directly enhancing accuracy. Additionally, the application of curriculum learning further boosts
performance.

For instance segmentation, the framework combines complex conditional distributions with unary,
pairwise, and higher-order terms. By leveraging weak annotations such as image-level and bounding
box labels, it achieves state-of-the-art performance on the PASCAL VOC 2012 dataset. These results
highlight the critical role of explicitly modeling uncertainty in pseudo-label generation for fine-grained
tasks.

7.1.2 Significance of the Work

This thesis establishes a foundation for weakly supervised learning in complex visual scene under-
standing tasks. The proposed probabilistic framework addresses a significant gap in the literature by

providing a principled and unified approach to handle weak annotations while maintaining scalability,
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efficiency, and robustness. By explicitly modeling uncertainty, the framework ensures reliable transfer
of knowledge from coarse annotations to fine-grained predictions, a critical requirement for real-world

applications where fully supervised data is often unavailable.

The flexibility of the framework makes it adaptable to a wide range of vision tasks beyond those
explored in this thesis. The integration of diverse priors, hints and constraints demonstrates its ability to
handle task-specific challenges, paving the way for further research in areas such as weakly supervised

video analysis, 3D scene understanding, and medical image analysis.

7.2 Future Directions

While this thesis presents significant advancements in weakly supervised learning (WSL), it also
opens up numerous opportunities for further exploration and innovation. The proposed framework and
methodologies provide a strong foundation for addressing the challenges of weak annotations, but there
remain several avenues for future research to enhance and extend the capabilities of WSL across diverse

tasks and domains.

One promising direction is the extension of the framework to video data. Unlike static images, videos
present additional challenges such as temporal coherence, motion dynamics, and the need to model
long-term dependencies across frames. Incorporating temporal information into the framework could
enable weakly supervised approaches to tackle tasks like action recognition, object tracking, and video
segmentation more effectively. Addressing these challenges would require integrating spatiotemporal
priors and exploring novel architectures capable of handling sequential data.

Another area of focus is improving scalability to handle extremely large datasets. While the cur-
rent framework demonstrates scalability to standard benchmarks, real-world datasets in domains such
as autonomous driving and social media often contain millions of samples. An exciting direction here is
the potential application of the framework to train foundational models using weak supervision. Foun-
dational models often rely on costly supervised datasets for alignment after their pretraining stage,
creating a significant bottleneck. By leveraging weak supervision, the proposed framework can facili-
tate the alignment process, reducing reliance on expensive, fine-grained annotations while maintaining
performance. Incorporating efficient uncertainty quantification into this process can further enhance the

reliability of foundational models in large-scale weakly annotated settings.

The applicability of the framework to other domains represents another exciting direction. For in-
stance, in medical imaging, weak annotations such as image-level labels or approximate bounding boxes
are commonly available due to the cost and expertise required for fine-grained annotations. Adapt-
ing the framework to tasks like disease detection, organ segmentation, and anomaly localization could
significantly impact healthcare by reducing dependency on detailed labels. Similarly, in autonomous
driving, weak annotations from large-scale driving datasets could be utilized to train models for object

detection, scene segmentation, and trajectory prediction, improving safety and efficiency. Efficient un-
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certainty quantification would play a critical role here, enabling models to provide reliable predictions
in safety-critical applications by highlighting uncertain outputs for further review or refinement.

Emerging paradigms such as open-set weakly supervised learning present another intriguing avenue
for research. Unlike traditional WSL, which assumes that all classes in the test set are known during
training, open-set WSL aims to handle unseen or novel classes during inference. This requires designing
frameworks that can generalize to unseen categories while effectively leveraging weak annotations.
Incorporating techniques such as zero-shot learning, domain adaptation, and uncertainty-aware models
could be pivotal in addressing these challenges.

Long-tailed weakly supervised learning is yet another important research area. Real-world datasets
often exhibit a long-tailed distribution where a few classes dominate, and many others are underrepre-
sented. Adapting the framework to handle such imbalances could involve designing loss functions and
sampling strategies that account for class distribution, ensuring robust performance across both frequent
and rare classes. Additionally, efficient uncertainty quantification could help focus learning on under-
represented classes by identifying regions of high uncertainty and guiding targeted data augmentation
or annotation efforts.

Lastly, integrating uncertainty estimation into more complex tasks and leveraging it for active learn-
ing could further enhance the framework’s utility. By quantifying uncertainty efficiently, the framework
could prioritize uncertain samples for expert labeling, thereby improving overall performance with mini-
mal annotation effort. Exploring active learning strategies in combination with the proposed probabilis-
tic framework and uncertainty quantification techniques could open up new possibilities for efficient
annotation pipelines and enhanced model performance.

In conclusion, while this thesis marks a significant step forward in weakly supervised learning, it
lays the groundwork for numerous future directions. By extending the framework to video data, scal-
ing to larger datasets, exploring new domains, and addressing emerging challenges such as open-set
and long-tailed WSL, along with advancing efficient uncertainty quantification techniques, the research

community can continue to push the boundaries of what is achievable with limited annotations.
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