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Abstract

Biryani, one of India’s most celebrated dishes, exhibits remarkable
regional diversity in its preparation, ingredients, and presentation.
With the growing availability of online cooking videos, there is
unprecedented potential to study such culinary variations using
computational tools systematically. However, existing video un-
derstanding methods fail to capture the fine-grained, multimodal,
and culturally grounded differences in procedural cooking videos.
This work presents the first large-scale, curated dataset of biryani
preparation videos, comprising 120 high-quality YouTube record-
ings across 12 distinct regional styles. We propose a multi-stage
framework leveraging recent advances in vision-language mod-
els (VLMs) to segment videos into fine-grained procedural units
and align them with audio transcripts and canonical recipe text.
Building on these aligned representations, we introduce a video
comparison pipeline that automatically identifies and explains pro-
cedural differences between regional variants. We construct a com-
prehensive question-answer (QA) benchmark spanning multiple
reasoning levels to evaluate procedural understanding in VLMs.
Our approach employs multiple VLMs in complementary roles, in-
corporates human-in-the-loop verification for high-precision tasks,
and benchmarks several state-of-the-art models under zero-shot
and fine-tuned settings. The resulting dataset, comparison method-
ology, and QA benchmark provide a new testbed for evaluating
VLMs on structured, multimodal reasoning tasks and open new
directions for computational analysis of cultural heritage through
cooking videos. We release all data, code, and the project website
at https://farzanashaju.github.io/how-does-india-cook-biryani/.

CCS Concepts

« Computing methodologies — Computer vision; Scene un-
derstanding; Activity recognition and understanding; Video
segmentation.
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1 Introduction
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Figure 1: Map of India showing 12 regional biryani types -
Ambur, Bombay, Dindigul, Donne, Hyderabadi, Kashmiri,
Kolkata, Awadhi, Malabar, Mughlai, Sindhi, and Thalassery.
Representative images illustrate differences in preparation,
ingredients, and presentation, with all videos sourced from
YouTube to capture authentic regional cooking practices.

Biryani is more than a culinary dish; it is a cultural symbol that
embodies the diversity and richness of Indian gastronomy. While
its name is shared across the country, its preparation varies widely
across regions, shaped by local traditions, availability of ingredi-
ents, and individual cooking styles. These differences manifest in
flavour and the sequence of preparation steps, the choice of utensils,
and the presentation style. With the proliferation of online plat-
forms such as YouTube, this diversity is now documented at scale
through cooking videos, providing an invaluable record of culinary
practices. However, despite abundant content, the computational
tools required to systematically capture and compare fine-grained
procedural variations in such videos remain underdeveloped.
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Figure 2: Overview of the Biryani Dataset. Panels (a—d) show representative frames from four of the twelve biryani categories -
Ambur, Dindigul, Hyderabadi, and Mughlai - capturing regional diversity in presentation, colour palette, and plating. Panels (e)
and (f) present verb and noun frequency word clouds derived from ASR-transcribed and translated speech, revealing common
procedural actions and key ingredients. Panel (g) shows the distribution of video durations, with most videos between 5-12
minutes, while panel (h) visualises a noun-verb co-occurrence heatmap, highlighting frequent action-ingredient pairings
central to biryani preparation. Panels (i-1) depict canonical procedural steps identified via GPT-4-generated template recipes.

Cooking videos present a unique challenge for computer vision
due to their multimodal nature, temporal complexity, and diversity
in visual presentation [8, 17, 21, 28, 43, 46]. The same high-level
dish can be prepared using markedly different sequences of actions,
ingredient combinations, and stylistic elements, often accompa-
nied by narration in different languages or dialects. Indian cooking
is known for its multi-step processes and intricate use of spices,
and these details are central to understanding the cultural and
procedural identity of a recipe [1, 4, 33]. Conventional video un-
derstanding approaches have primarily focused on coarse-grained
action recognition or highlight detection, which are insufficient for
modelling such nuanced, structured tasks [10, 15, 21, 26].

Over the past two decades, video analysis has evolved from
handcrafted feature-based methods [3, 23], such as Hidden Markov
Models [19, 24, 41] and Support Vector Machines [6, 9, 22], to deep
learning models capable of capturing richer visual patterns from
large datasets [25, 27, 32]. More recently, large vision-language
models (VLMs) have emerged as a powerful paradigm, jointly rea-
soning over visual and textual information to produce semantically
meaningful outputs [20, 34, 47]. These models have demonstrated
strong generalisation capabilities in diverse domains, yet their ap-
plication to structured procedural understanding remains relatively
unexplored, particularly in culturally rich contexts. In the context
of cooking, and biryani in particular, VLMs can move beyond recog-
nising individual actions toward modelling the full procedural flow,
aligning it with textual recipes, and enabling fine-grained compar-
isons between variations.

The contributions of this work are as follows:

e We introduce the first curated dataset of Indian biryani prepa-
ration videos, annotated with fine-grained temporal segmen-
tation and multimodal labels.

e We design a robust VLM-based pipeline for procedural video
segmentation, multimodal alignment, and question-answer
generation.

e We propose a novel video comparison framework for ana-
lysing subtle procedural differences across regional biryani
variants.

e We provide quantitative benchmarks and qualitative analy-
ses of the performance of current VLMs on culturally rich
procedural video understanding tasks.

The remainder of the paper is organised as follows. Section 2
describes the dataset curation process, Section 3 details the video
segmentation framework, Section 4 presents the multimodal align-
ment methodology, Section 5 outlines the QA dataset generation
and benchmarking experiments, Section 6 introduces the video com-
parison framework, and Section 7 discusses potential applications
and concludes.

2 Biryani Dataset

We want to study how different videos curated for the same purpose
(in this case cooking biryani) differs or compares. We start with
creating a dataset of publicly available biryani cooking videos. We
curate a dataset of 120 cooking videos focused on biryani prepara-
tion, sourced from YouTube. The dataset spans 12 distinct types of
biryani (Ambur, Bombay, Dindigul, Donne, Hyderabadi, Kashmiri,
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Kolkata, Awadhi, Malabar, Mughlai, Sindhi, and Thalassery). For
each category, we collect 10 distinct videos per category, as shown
with representative frames in Figure 2 (a-d), illustrating the diver-
sity in presentation, colour palette, and plating traditions across
regions.

Videos were chosen for their culinary popularity and the avail-
ability of high-quality recordings. To maximise utility for the down-
stream tasks, we prioritized videos featuring clear audio, spoken
narration of cooking steps, complete visual coverage of the prepa-
ration process, and a range of durations. Given the pan-Indian
diversity of the selected biryani types, the dataset exhibits substan-
tial variation in language, cooking techniques, narration styles, and
cinematographic choices such as camera angles and editing styles.

We first extract audio from each video and perform automatic
speech recognition (ASR) using WhisperX [5] and Whisper-Large
[29]. All transcripts are translated into English (using GPT-4 [2]) to
standardise linguistic representation across the dataset. We then
use part-of-speech tagging with spaCy [12] to extract nouns, verbs,
and adjectives from the transcripts, producing frequency-based
visualisations such as word clouds. Figures 2 (e, f) show examples
of these visualisations, where high-frequency verbs (e.g., “add”,
“cook”) and nouns (e.g., “rice”, “onion”) capture the procedural and
ingredient focus of biryani preparation. Additional analyses, such
as the duration histogram in Figure 2 (g), reveal that most videos fall
within a 5-12 minute range, while the noun-verb co-occurrence
heatmap in Figure 2 (h) highlights common action-object pairings
that define core cooking steps.

To enable fine-grained analysis (such as step-level captioning or
instruction grounding), we segment each cooking video into mean-
ingful procedural units. We generate canonical template recipes
for each biryani type using GPT-4 [2], which provided structured
reference sequences of cooking steps. These generated templates
served as a standardized framework for identifying procedural steps
across diverse video formats, rather than acting as an authentic
recipe ground-truth. Manual verification ensured the consistency
and usability of this framework for temporal segmentation. An ad-
ditional “Miscellaneous/Intro/Outro” class is used in each template
to account for non-cooking content commonly present in YouTube
videos, such as greetings, personal anecdotes, promotional mes-
sages, or outros, ensuring that such segments are meaningfully
grouped and excluded from step-level misalignment. Figure 2 (i-1)
depicts canonical procedural frames extracted from videos, includ-
ing soaking rice, marinating chicken, frying onions, and adding
spices—steps that recur across multiple biryani variants despite
regional differences.

3 Video Segmentation

We use InternVL-14B [48], a state-of-the-art Vision-Language Model
(VLM), to process each segment. As shown in Fig. 3, the model is
prompted to extract three key categories of information: (a) Ingredi-
ents, (b) Utensils (Objects), and (c) Actions (verbs). Significantly, the
model relies solely on visual content (sampled video frames) and
does not access audio or transcripts, ensuring that annotations are
grounded purely in visual evidence.! Since cooking actions often
span more than one 10-second interval, the same canonicalised

1All the prompts used in this paper are available in the supplementary material.
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action label can appear in consecutive segments. To improve tem-
poral coherence, we merge timestamps for such repeated actions
within a video into a single continuous span, while ensuring unre-
lated actions in adjacent segments remain separate. This reduces
unnecessary fragmentation and yields longer, coherent action-level
sequences without merging distinct activities. Direct application
of InternVL-14B across thousands of segments yields a detailed
mapping of ingredients, utensils, and actions over time. However,
action descriptions often vary lexically despite being semantically
identical (e.g., “stirring rice” vs. “stirring rice and water with a
wooden spoon”). To address this, each action phrase is embedded
using the all-MiniLM-L6-v2 SentenceTransformer model [30] and
clustered via agglomerative clustering with average linkage and a
cosine distance threshold of 0.3, merging clusters until no pair falls
below this threshold. A single representative phrase from each clus-
ter serves as the canonical action label, improving label consistency
and enabling robust querying, statistical analysis, and downstream
tasks such as recipe step generation and video retrieval.

Although InternVL-14B produced high-quality visual annota-
tions, we introduced an automated verification step using Gemini-
2.5-flash-lite [35] to ensure each labelled action was visibly present
in its corresponding segment. This lightweight VLM was queried
with deterministic yes/no prompts over sampled video frames, en-
abling reliable validation for downstream tasks such as step-wise
recipe alignment and skill-specific retrieval. 2. We verified 14,470
video—action segments across all biryani types, with 11,295 (78.05%)
labelled as correct and 3,175 (21.95%) as incorrect, thereby increas-
ing confidence in the dataset’s action labels.

3.1 Results

The initial action detection stage produced a highly granular label
space, with 10,481 unique action classes. After applying the action
clustering process, this number was reduced to 2,187 canonicalised
action classes, greatly improving consistency in labelling.

Similarly, the temporal merging process significantly reduced
fragmentation in the video segmentation. Across all videos, the
number of timestamped clips decreased from 16,761 before merging
to 14,479 after merging, representing a 13.6% reduction in segment
count while preserving full action coverage.

3.2 Multimodal Alignment: Video, Audio, and
Recipe Texts

To build a unified understanding of each biryani cooking video, we
align three modalities: WhisperX transcripts (temporally ordered
narration), InternVL visual segment descriptions (ingredients, uten-
sils, and actions for every 10-second chunk), and manually curated
canonical recipes (standard steps and titles per biryani type). As
shown in Fig 3, alignment begins with coarse filtering, where low-
ercased and tokenised segment metadata keywords (from detected
ingredients/utensils) are matched against transcript lines and recipe
steps to eliminate irrelevant pairs. Remaining candidates undergo
fine-grained alignment: transcript sentences and recipe steps are
embedded with a SentenceTransformer [30], and Dynamic Time
Warping (DTW) over cosine distances preserves sequential struc-
ture while tolerating omissions, insertions, or reordering—handling

The complete verification workflow is provided in the supplementary material
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Figure 3: Overview of the multimodal video segmentation and alignment pipeline. Panel (a) shows the 10-second clip segmenta-
tion of biryani cooking videos, where each segment is processed by InternVL-14B to extract visually grounded annotations of
actions, ingredients, and utensils. Consecutive segments containing the same action are merged to form continuous spans,
improving temporal coherence. Panel (b) presents example video scene graphs depicting detected entities and their relationships.
displays an alignment heatmap between canonical recipe steps (vertical) and transcript sentences (horizontal), where colour
intensity indicates semantic similarity and the red path represents the optimal sequence alignment computed via Dynamic

Time Warping.

deviations from ideal diagonal mappings caused by narration order,
granularity mismatches, or pacing differences. For segments pass-
ing coarse filtering, we further embed InternVL-extracted actions
and recipe steps using BGE [40], compute cosine similarities, as-
sign each chunk to its most semantically relevant recipe step, and
rank segments per step with confidence scores. This multimodal
alignment enables recipe-aware search, visualisation, and retrieval
across heterogeneous time scales and structures.

4 Video Comparison

We aim to understand different biryani recipes by comparing their
cooking processes. By comparing the cooking process for different
types of biryani, we can identify common patterns and variations
in the cooking methods, ingredients, and techniques used. This can
help us understand the unique characteristics of each biryani recipe
and how they differ.

To compare the cooking processes, including ingredients, meth-
ods, actions, etc., different biryani varieties (for example, Hyder-
abadi biryani vs Lucknowi biryani), we developed a video compari-
son framework adapted from the VidDiff method [7] that identifies
and visualises the differences in cooking actions, ingredients, and
techniques. This framework is designed to analyse the cooking
videos in our dataset, allowing users to understand how different
biryani recipes vary in terms of their preparation methods.

To compare the cooking processes across different biryanirecipes,
we adapted the VidDiff framework [7] to our specific use case. The
framework consists of three main stages:

Proposer: This stage generates plausible variations for each ac-
tion class. For each action class, we prompt an LLM to generate
plausible ways the action might vary. We also take an action and
break it down into sub-actions. Finally, we link the differences to
the sub-actions. The LLM is prompted to generate 2-3 variations
in the cooking actions that are visually significant and would af-
fect the final frames, and also prompted to generate 2-4 sub-action

stages for each action class. The LLM then creates explicit map-
pings between variations and sub-actions. These mappings specify
which differences would be most visually detectable during specific
sub-action stages. We employ Qwenz2.5 [37].

Frame Retriever: This stage retrieves temporal localisation of sub-
actions from cooking videos using CLIP [30]. We embed textual
retrieval strings and video frames into a shared semantic space, then
compute cosine similarity scores to identify the top-k (k=2) frames
that best match each sub-action. This focuses on peak similarity
moments where sub-actions are most visually apparent, using ViT-
BigG-14 (Open-CLIP) [13].

Action Differentiating: In this final stage, we analyse and visualise
the differences between two cooking video segments (segmented
by action) using the last stage’s localised frames. For each pair of
corresponding sub-action segments identified in the previous stage,
we pose a multiple-choice question (which were generated from
the multiple differences we got from the proposer stage) to a VLM,
which determines whether each difference is present in Video A or
Video B or It’s unsure. We transform our recipe comparison task
into a multiple-choice question for the VLM. The VLM is then used
to determine which video shows more of the proposed difference,
providing a detailed explanation of the observed differences. This
allows us to visualise and understand how the cooking processes
differ between the two biryani recipes. We employ Gemini-2.5-flash-
lite [35].

4.1 Results

Our video comparison framework identified meaningful differ-
ences across biryani varieties. Figure 5 shows that certain cooking
stages exhibit minimal variation between Hyderabadi and Lucknowi
biryani , while others display substantial differences.

The framework detected differences in 33.2% of action compar-
isons. This proportion indicates that while biryani varieties share
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Figure 4: Overview of the video comparison framework for biryani recipes. The framework operates through three sequential
stages: Proposer (Qwen2-VL) generates plausible variations for each action, Frame Localiser (CLIP) identifies relevant frames,
and Action Differencer compares frame pairs to detect differences. This example demonstrates analysis of "Adding ginger-garlic
paste,” identifying that Video B uses less paste than Video A.
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Figure 5: Visualisation of cooking process variations between Hyderabadi and Lucknowi biryani across several cooking stages.
Each coloured section represents a major cooking stage, with individual squares showing specific actions. The opacity of the
square is proportional to the degree of variation detected between the two biryani styles, where larger squares indicate more
significant differences.

Table 1: Distribution of comparison results across randomly

consistent but specific techniques diverge based on cultural and
paired video segments from 12 biryani varieties

regional influences.

Further details, visualisations, and discussion of these results are
Outcome Percentage of Comparison provided in the supplementary material.

To validate the accuracy of the framework, 2000 randomly sam-
pled comparisons were verified by a group of 4-5 independent
annotators, with each annotator reviewing a subset of the sam-
ples. The verification focused on confirming model-proposed dif-
ferences rather than performing exhaustive difference detection,
which would scale exponentially and is not practically feasible. Ta-
ble 2 shows accuracy rates across different comparison categories.

Difference detected 33.2%
No detectable difference 66.8%

core cooking procedures, they exhibit distinct variations in exe-
cution methods. The detection rate aligns with expectations for
regional culinary variants, where fundamental processes remain
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Table 2: Manual verification accuracy across categories

Category Correct Incorrect
Difference detected  67.5% 32.5%
No difference 45.7% 54.3%

The verification results reveal systematic challenges in the model’s
performance. The framework achieved 67.5% accuracy for detected
differences, indicating reliable identification of actual procedural
variations. However, accuracy drops to 45.7% for "no difference"”
classifications, suggesting the model misses subtle but meaningful
variations that human annotators can detect. This performance gap
likely stems from the model’s limited exposure to Indian cooking
contexts during training, resulting in conservative judgments when
analysing culturally specific culinary techniques. Additionally, the
model occasionally generates false differences or misattributes vari-
ations between video clips, highlighting areas for future improve-
ment.

Despite these limitations, the framework successfully captures
meaningful procedural differences across regional biryani varieties,
providing valuable insights into how traditional cooking methods
vary while maintaining cultural authenticity.

5 Video Question Answering

Video Question Answering (VQA) is a key benchmark for evaluating
comprehensive scene understanding [14, 31, 39, 42, 44]. Unlike static
image tasks, it requires joint reasoning over spatial (object and scene
layout), temporal (event ordering, procedural flow), and causal (why
actions occur) aspects within and across videos. This capability
moves AI/ML systems beyond isolated recognition toward context-
aware reasoning in dynamic settings.

In cooking, such reasoning is essential: ‘What ingredient was
added before the onions?’ demands temporal ordering; “‘Why was
the heat reduced after adding milk?’ requires causal inference; and
‘Which recipe uses more spices?” involves multi-video comparison.
By spanning easy, medium, and hard difficulty tiers, our dataset
targets this spectrum—from basic perceptual recognition to complex
cross-video reasoning—making it both a challenge for current VLMs
and a step toward more general-purpose, reasoning-capable Al

We construct the dataset using a multi-stage pipeline of tempo-
ral segmentation, automated visual description, language model
prompting, and manual curation. Difficulty tiers are defined as
Easy (single short segment), Medium (entire video comprehension),
and Hard (multi-video reasoning). Each video is temporally seg-
mented to capture localised cooking events, with InternVL3-14B
[48] producing natural language descriptions of ingredients, uten-
sils, and preparation steps. Gemini-2.0-Flash then integrates these
segment-level captions [36] into coherent, visually detailed, step-
by-step recipe narratives that comprehensively represent the entire
cooking process.

5.1 QA Generation

Easy QA Generation. For easy QA pairs, we focus on individual
segments. We randomly sample up to three 10-second segments for

each video to generate QA pairs, balancing diversity and computa-
tional efficiency. We prompt Llama-3-8B-Instruct [11] to system-
atically extract three categories of information from each selected
segment: (a) ingredients shown (b) utensils used (c) cooking actions
performed

To ensure high data quality, we manually review the generated
QA pairs for each video, selecting the two most informative and
unambiguous examples 3. This curation step filters out incomplete,
repetitive, or low-detail responses, yielding a robust set of easy,
segment-grounded QA pairs.

Medium QA Generation. For medium-level QA generation, the
goal is to assess the model’s comprehension of the entire cooking
process in each video, requiring integration of visual and procedural
cues across the full temporal span. In contrast to the short-segment
focus of easy QA pairs, these questions target broader aspects such
as ingredient usage, temporal ordering of key steps, and presenta-
tion details. Video summaries are combined with aligned audio tran-
scripts to enable this, providing a rich multimodal textual context
that captures visual observations and spoken instructions. Using
this input, we prompt Gemini-2.0-Flash [36] to produce a high-
level summary and multiple QA pairs, guided by carefully designed
question templates tailored to cooking scenarios. These templates
emphasize visual elements (e.g., primary ingredients, garnishes,
spices), temporal understanding (e.g., sequence of actions, cooking
durations, preparation time), and utensil or process details (e.g.,
vessel type, marination or frying steps), while allowing the model
to generate additional contextually relevant questions beyond the
provided templates.

Hard QA Generation. For the most challenging QA tier, we eval-
uate a model’s ability to reason across multiple cooking videos,
requiring deeper comparative understanding of recipes, cooking
styles, and ingredient choices. We first create multimodal sum-
maries of individual videos by combining detailed frame-wise visual
descriptions with complete audio transcripts, capturing both rich
visual details (ingredients, techniques, utensils, textures, plating)
and spoken instructions (quantities, tips, emphases).

We generate hard QA pairs from these summaries by sampling
combinations of 2, 3, 4, and 5 videos from the 120-video pool and in-
structing Gemini-2.5-Flash [35] to analyse their combined content.
The model compares, contrasts, and synthesizes details—such as
ingredients, cooking methods, spice levels, preparation sequences,
and presentation styles—to formulate high-level, reasoning-intensive
QA that require integrating information from multiple sources.

Dataset Statistics. Our QA generation pipeline produces 240
easy, 1,357 medium, and 486 hard question-answer (QA) pairs. The
hard QA set is further subdivided based on the number of videos
required for reasoning: hardga2 (146), hardga3 (171), hardqga4 (82),
and hardqga5 (87). The dataset is evenly split into training and
test sets to support model development and evaluation, ensuring
balanced representation across all difficulty levels and subsets.

Figure 7 summarizes these statistics. Panel (a) shows the percent-
age distribution of QA pairs by difficulty, where medium questions
dominate (65.1%), followed by hard (23.3%) and easy (11.5%). Panel

3Examples of QA pairs for each difficulty tier are provided in the supplementary
material
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Figure 6: Example QA pairs from the biryani video QA dataset, covering easy, medium, and hard difficulty tiers. Questions
were generated via a multi-stage pipeline (temporal segmentation, captioning, summary synthesis, LLM prompting, and
human curation). Easy QAs are segment-level recognition tasks, medium QAs require whole-video temporal and procedural
understanding, and hard QAs demand multi-video reasoning and comparison. These examples illustrate the dataset’s progression

from simple perception to complex reasoning,.

(b) presents the average answer length for each difficulty type. As
expected, harder questions tend to require longer answers, with
an average of over 20 words for hard items compared to around 12
words for easy ones. This trend reflects the increased complexity
and reasoning demands of higher difficulty levels.

Hwerage Answer Length

23.3%
Hard

FRETN——
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Faey Nechum vt
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(a) Percentage of QA Pairs Per Difficulty Type (b) Average Answer Length Per Difficulty Type

Figure 7: Statistics of the biryani video QA dataset. (a) Distri-
bution of question—-answer pairs across difficulty levels. (b)
Average answer length per difficulty type, showing a clear
upward trend with complexity.

5.2 Results

We benchmark existing video-language models (VLMs) on our QA
dataset using both zero-shot and fine-tuned settings. Five open-
source VLMs are evaluated in zero-shot mode — InternVL3-8B
(internvl3) [48], Qwen2-VL-7B-Instruct (qwen2vl) [38], llava-v1.6-
mistral-7b-hf (llavanext) 18], llava-onevision-qwen2-7b-ov-hf (llava
ov) [16], and VideoLLaMA3-7B-Image (videollama) [45] — and
we fine-tune Llama-3.2-11B-Vision-Instruct (Illama3ft) [11] on our
dataset with type-specific prompts and frame-sampled inputs to
measure domain adaptation gains.

We report standard QA metrics - BLEU, ROUGE-L, and BERTScore
- to capture lexical and semantic similarity, but true evaluation lies

in the dataset’s tier design. The medium and hard tiers deliberately
require temporal, procedural, and cross-recipe reasoning, making
the tier structure a stronger indicator of reasoning depth than raw
metric scores.k

Across all metrics, the fine-tuned Llama-3.2 outperforms zero-
shot baselines, with the most significant gains on medium and hard
questions. Improvements are most pronounced in BERTScore, indi-
cating stronger semantic alignment in addition to lexical accuracy.
Some zero-shot models (e.g., Qwen2-VL, InternVL3) perform com-
petitively in certain tiers, but none match the fine-tuned model’s
consistency.

For the hard QA tier, we further break down results into hard2
- hard5, corresponding to the number of videos required for rea-
soning. Tables 3 and 4 present full results. Performance generally
declines with more videos, reflecting the difficulty of multi-video
reasoning.

We demonstrate a systematic framework for characterising the
depth of understanding of Al systems in the cooking domain. Though
today’s Al systems are very promising for many tasks, there is a
good amount of work leftout in developing skills required for un-
derstanding fine and specialized skills, as in domains like cooking.

6 Discussions

Application in Skill-Based Video Retrieval. Beyond full-
recipe visualisation, our dataset supports targeted instructional
search within and across videos. For instance, if a user is inter-
ested in understanding how to marinate chicken—a critical step
in many biryani variants—they can retrieve all video segments
across the dataset that involve marination actions. These segments
are sourced from different videos but are uniformly timestamped
and labelled using our alignment framework. Figure 8 presents an
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Figure 8: Example of skill-based video retrieval for the query “marinating chicken”. The system returns short, timestamped
clips from multiple biryani videos where the marination step is visually identified, enabling direct access to semantically

relevant moments rather than full unindexed videos.

Table 3: Overall QA performance of VLMs on the QA dataset
across easy, medium, and hard difficulty tiers. Best results
for each metric-tier combination are highlighted in bold.

Table 4: Hard-tier breakdown showing VLM performance on
subsets hard2, hard3, hard4, and hard5, corresponding to the
number of videos required for reasoning,.

VLM Metric easy medium hard VLM Metric hard2 hard3 hard4 hard5
BLEU 0.0294 0.0291 0.0395 BLEU 0.0432 0.0405 0.0386 0.0322
internvl3 ROUGE-L 0.2184 0.1732 0.2457 internvl3 ROUGE-L 0.2624 0.2510 0.2444 0.2087
BERTScore  0.1663 0.1628 0.2683 BERTScore  0.2882 0.2756 0.2532 0.2347
BLEU 0.0314 0.0209 0.0609 BLEU 0.0597 0.0679 0.0526 0.0570
qwen2vl ROUGE-L 0.1914 0.1189 0.3201 qwen2vl ROUGE-L 0.3300 0.3238 0.3174 0.2990
BERTScore  0.1298 -0.0747 0.3022 BERTScore  0.3107 0.2980 0.3052 0.2932
BLEU 0.0128 0.0216 0.0150 BLEU 0.0052 0.0205 0.0113 0.0239
llavanext ROUGE-L 0.1319 0.1367 0.1911 llavanext ROUGE-L 0.1663 0.2038 0.1718 0.2257
BERTScore  -0.1732 0.0465 0.0984 BERTScore  0.0700 0.1066 0.0727 0.1540
BLEU 0.0038 0.0278 0.0246 BLEU 0.0226 0.0282 0.0215 0.0236
llavaov ROUGE-L 0.0408 0.1383 0.1386 llavaov ROUGE-L 0.1390 0.1459 0.1329 0.1286
BERTScore  -0.2586 0.0377 -0.0073 BERTScore  0.0066 0.0094 -0.0400 -0.0327
BLEU 0.0194 0.0787 0.0502 BLEU 0.0504 0.0624 0.0339 0.0411
videollama  ROUGE-L 0.1883 0.2713 0.2650 videollama  ROUGE-L 0.2643 0.2870 0.2326 0.2537
BERTScore  0.0897 0.3071 0.2445 BERTScore  0.2573 0.2552 0.2049 0.2391
BLEU 0.0472 0.1683 0.1140 BLEU 0.1073 0.1306 0.0987 0.1068
llama3ft ROUGE-L 0.2689 0.4214 0.4072 llama3ft ROUGE-L 0.4045 0.4279 0.3845 0.3927
BERTScore  0.2660 0.4869 0.4526 BERTScore  0.4622 0.4669 0.4279 0.4319

example frame retrieved from a marination segment. Unlike tra-
ditional video search engines, which return entire videos without
pinpointing where the relevant action occurs, our approach enables
direct navigation to semantically aligned moments within the video
corpus.

Our work opens up many more potential applications in cooking:

e Understanding and documenting the rich cultural heritage
of the country. Eventually transferring one to the other in
an appropriate manner.

e We hope the deeper video understanding presented here
could lead to educational tool and cooking assistants, who
can provide contextual assistance with speech and language
when integrated with an ego-centric vision.

6.1 Summary

In this work, we presented a systematic computational study of
biryani preparation videos from across India. We aimed to under-
stand how fine-grained procedural differences manifest in culturally
rich cooking practices. We curated the first large-scale Biryani Cook-
ing Video Dataset, comprising 120 high-quality YouTube videos
spanning 12 distinct regional styles. Building on recent advances

in vision-language models (VLMs), we developed a multi-stage
framework for temporal segmentation and multimodal alignment
between visual content, narration, and canonical recipe text.

We used this aligned representation to introduce a video com-
parison pipeline that identifies and explains procedural differences
between regional variants, enabling interpretable cross-recipe anal-
ysis. We further constructed a multi-tier question—answer bench-
mark to evaluate VLMs on procedural video understanding tasks
ranging from localised recognition to multi-video reasoning. Our ex-
periments benchmarked several state-of-the-art VLMs under both
zero-shot and fine-tuned settings, highlighting the potential of
domain adaptation for structured multimodal reasoning.

Beyond its immediate results, this work provides a foundation for
a new class of video understanding benchmarks that combine cul-
tural specificity with fine-grained procedural analysis. The dataset,
prompts, and annotations will be released to facilitate reproducibil-
ity and further research. Future directions include expanding the
scope to other culturally significant dishes, improving alignment
robustness in the presence of noisy narration, and developing more
efficient VLM prompting strategies for long-form video.



How Does India Cook Biryani?

Acknowledgements. We acknowledge and appreciate the sup-
port of Google Research / Al in this project.

References
[1] KT. Achaya. 1994. Indian Food: A Historical Companion. Zenodo. doi:10.5281/

[10

[11

[12

(13

[14

(15

[16

[17

(18

[19

[20

[21

[22

]

]

]

]

]

]

]

]

zenodo.4067897

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

Mahmoud Al-Faris, John Chiverton, David Ndzi, and Ahmed Isam Ahmed. 2020. A
review on computer vision-based methods for human action recognition. Journal
of imaging 6, 6 (2020), 46.

Vishu Antani and Santosh Mahapatra. 2022. Evolution of Indian cuisine: a
socio-historical review. Journal of Ethnic Foods 9, 1 (2022), 15.

Max Bain, Jaesung Huh, Tengda Han, and Andrew Zisserman. 2023. Whis-
perx: Time-accurate speech transcription of long-form audio. arXiv preprint
arXiv:2303.00747 (2023).

Praveen Batapati, Duy Tran, Weihua Sheng, Meiqin Liu, and Ruili Zeng. 2014.
Video analysis for traffic anomaly detection using support vector machines. In
Proceeding of the 11th World Congress on Intelligent Control and Automation. IEEE,
5500-5505.

James Burgess, Xiaohan Wang, Yuhui Zhang, Anita Rau, Alejandro Lozano, Lisa
Dunlap, Trevor Darrell, and Serena Yeung-Levy. 2025. Video Action Differencing.
In The Thirteenth International Conference on Learning Representations. https:
//openreview.net/forum?id=3bcN6x106f

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino
Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett,
Will Price, et al. 2018. Scaling egocentric vision: The epic-kitchens dataset. In
Proceedings of the European conference on computer vision (ECCV). 720-736.
Mohamed M Elgamml, Fazly S Abas, and H Ann Goh. 2020. Semantic analysis
in soccer videos using support vector machine. International Journal of Pattern
Recognition and Artificial Intelligence 34, 09 (2020), 2055018.

Junyu Gao and Changsheng Xu. 2021. Learning video moment retrieval without
a single annotated video. IEEE Transactions on Circuits and Systems for Video
Technology 32, 3 (2021), 1646-1657.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek
Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783
(2024).

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, Adriane Boyd, et al.
2020. spaCy: Industrial-strength natural language processing in python. (2020).
Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas
Carlini, Rohan Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John
Miller, Hannaneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt. 2021. OpenCLIP.
d0i:10.5281/zenodo.5143773 If you use this software, please cite it as below..
Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim, and Gunhee Kim. 2017.
TGIF-QA: Toward Spatio-Temporal Reasoning in Visual Question Answering. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Licheng Jiao, Ruohan Zhang, Fang Liu, Shuyuan Yang, Biao Hou, Lingling Li,
and Xu Tang. 2021. New generation deep learning for video object detection: A
survey. IEEE Transactions on Neural Networks and Learning Systems 33, 8 (2021),
3195-3215.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen
Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, et al. 2024. Llava-onevision: Easy
visual task transfer. arXiv preprint arXiv:2408.03326 (2024).

Franklin Mingzhe Li, Kaitlyn Ng, Bin Zhu, and Patrick Carrington. 2025. OSCAR:
Object Status and Contextual Awareness for Recipes to Support Non-Visual
Cooking. In Proceedings of the Extended Abstracts of the CHI Conference on Human
Factors in Computing Systems. 1-6.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. 2024. Improved baselines
with visual instruction tuning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 26296-26306.

Cheng Lu, Mark S Drew, and James Au. 2001. Classification of summarized
videos using hidden Markov models on compressed chromaticity signatures. In
Proceedings of the ninth ACM international conference on Multimedia. 479-482.
Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan.
2023. Video-chatgpt: Towards detailed video understanding via large vision and
language models. arXiv preprint arXiv:2306.05424 (2023).

Jonathan Malmaud, Jonathan Huang, Vivek Rathod, Nick Johnston, Andrew
Rabinovich, and Kevin Murphy. 2015. What’s cookin’? interpreting cooking
videos using text, speech and vision. arXiv preprint arXiv:1503.01558 (2015).
Zhang Min-qing and Li Wen-ping. 2021. An automatic classification method
of sports teaching video using support vector machine. Scientific programming
2021, 1 (2021), 4728584.

[23

[24

[25

IS
o

[27

(28]

[29

[30

w
=

[32

[33

[34

[36

[37

[38

[40

[41

[42

[45

ICVGIP 2025, December 17-20, 2025, Mandi, India

Loris Nanni, Stefano Ghidoni, and Sheryl Brahnam. 2017. Handcrafted vs. non-
handcrafted features for computer vision classification. Pattern recognition 71
(2017), 158-172.

Pradyumna Narayana, ] Ross Beveridge, and Bruce A Draper. 2018. Interacting
Hidden Markov Models for Video Understanding. International Journal of Pattern
Recognition and Artificial Intelligence 32, 11 (2018), 1855020.

Eralda Nishani and Betim Cigo. 2017. Computer vision approaches based on
deep learning and neural networks: Deep neural networks for video analysis
of human pose estimation. In 2017 6th Mediterranean Conference on Embedded
Computing (MECO). IEEE, 1-4.

Taichi Nishimura, Atsushi Hashimoto, Yoshitaka Ushiku, Hirotaka Kameko, and
Shinsuke Mori. 2024. Recipe generation from unsegmented cooking videos. ACM
Transactions on Multimedia Computing, Communications and Applications (2024).
Marios S Pattichis, Venkatesh Jatla, and Alvaro E ulloa Cerna. 2023. A review
of machine learning methods applied to video analysis systems. In 2023 57th
Asilomar Conference on Signals, Systems, and Computers. IEEE, 1161-1165.
Toby Perrett, Ahmad Darkhalil, Saptarshi Sinha, Omar Emara, Sam Pollard,
Kranti Kumar Parida, Kaiting Liu, Prajwal Gatti, Siddhant Bansal, Kevin Flanagan,
et al. 2025. Hd-epic: A highly-detailed egocentric video dataset. In Proceedings of
the Computer Vision and Pattern Recognition Conference. 23901-23913.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and
Ilya Sutskever. 2023. Robust speech recognition via large-scale weak supervision.
In International conference on machine learning. PMLR, 28492-28518.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics. https://arxiv.org/abs/1908.10084

Xindi Shang, Yicong Li, Junbin Xiao, Wei Ji, and Tat-Seng Chua. 2021. Video
visual relation detection via iterative inference. In Proceedings of the 29th ACM
international conference on Multimedia. 3654-3663.

Vijeta Sharma, Manjari Gupta, Ajai Kumar, and Deepti Mishra. 2021. Video
processing using deep learning techniques: A systematic literature review. IEEE
Access 9 (2021), 139489-139507.

Tulasi Srinivas. 2011. Exploring Indian culture through food. Education about
Asia 16, 3 (2011), 38-41.

Yunlong Tang, Jing Bi, Siting Xu, Luchuan Song, Susan Liang, Teng Wang, Daoan
Zhang, Jie An, Jingyang Lin, Rongyi Zhu, et al. 2025. Video understanding with
large language models: A survey. IEEE Transactions on Circuits and Systems for
Video Technology (2025).

Gemini Team. 2025. Gemini 2.5: Pushing the Frontier with Advanced Reasoning,
Multimodality, Long Context, and Next Generation Agentic Capabilities. arXiv
preprint arXiv:2507.06261 (July 2025).

Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste
Alayrac, Montserrat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna,
Robert Baruch, Maria Bauza, Michiel Blokzijl, et al. 2025. Gemini robotics: Bring-
ing ai into the physical world. arXiv preprint arXiv:2503.20020 (2025).

Qwen Team. 2024. Qwen2.5: A Party of Foundation Models. https://qwenlm.
github.io/blog/qwen2.5/

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin
Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du,
Xuancheng Ren, Rui Men, Dayiheng Liu, Chang Zhou, Jingren Zhou, and Junyang
Lin. 2024. Qwen2-VL: Enhancing Vision-Language Model’s Perception of the
World at Any Resolution. arXiv preprint arXiv:2409.12191 (2024).

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. 2021. NExT-QA: Next
Phase of Question-Answering to Explaining Temporal Actions. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
9777-9786.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. 2023.
C-Pack: Packaged Resources To Advance General Chinese Embedding.
arXiv:2309.07597 [cs.CL]

Lexing Xie, Shih-Fu Chang, Ajay Divakaran, and Huifang Sun. 2002. Learning
hierarchical hidden Markov models for video structure discovery. ADVENT
Group, Columbia Univ., New York, Tech. Rep 6 (2002).

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang, Xiangnan He, and
Yueting Zhuang. 2017. Video question answering via gradually refined atten-
tion over appearance and motion. In Proceedings of the 25th ACM international
conference on Multimedia. 1645-1653.

Frank F Xu, Lei Ji, Botian Shi, Junyi Du, Graham Neubig, Yonatan Bisk, and Nan
Duan. 2020. A benchmark for structured procedural knowledge extraction from
cooking videos. arXiv preprint arXiv:2005.00706 (2020).

Pinci Yang, Xin Wang, Xuguang Duan, Hong Chen, Runze Hou, Cong Jin, and
Wenwu Zhu. 2022. Avqa: A dataset for audio-visual question answering on
videos. In Proceedings of the 30th ACM international conference on multimedia.
3480-3491.

Bogiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng
Chen, Sicong Leng, Yuming Jiang, Hang Zhang, Xin Li, et al. 2025. Videollama
3: Frontier multimodal foundation models for image and video understanding.
arXiv preprint arXiv:2501.13106 (2025).



ICVGIP 2025, December 17-20, 2025, Mandi, India

[46] Luowei Zhou, Chenliang Xu, and Jason Corso. 2018. Towards automatic learning
of procedures from web instructional videos. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 32.

[47] Deyao Zhu, Jun Chen, Xiaogian Shen, Xiang Li, and Mohamed Elhoseiny. 2023.
Minigpt-4: Enhancing vision-language understanding with advanced large lan-
guage models. arXiv preprint arXiv:2304.10592 (2023).

[48] Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu,
Hao Tian, Yuchen Duan, Weijie Su, Jie Shao, et al. 2025. Internvl3: Exploring
advanced training and test-time recipes for open-source multimodal models.
arXiv preprint arXiv:2504.10479 (2025).



